Lecture 1 Farkas's Lemma, Strong Duality and Criss-Cross Algorithm

Instructor: Tamás Terlaky
Scribe: Yutong Dai
Last Modified: 2019-10-18

Disclaimer: This note has not been subjected to the usual scrutiny reserved for formal publications.
Consider the following primal-dual problem

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } \quad c ^ { T } x } \\
{ \text { s.t } } & { A x = b } \\
{ } & { x \geq 0 , }
\end{array} \quad (P) \quad \left\{\begin{array}{l}
\max \quad b^{T} y \\
\text { s.t } A^{T} y \leq c
\end{array}\right.\right.
$$

Correspondingly, we have following version of Farkas' Lemma

Lemma 1.1: Farkas' Lemma (Primal Form)

One and only one of the following two systems of linear inequalities has a feasible solution.

$$
\left(I_{p}\right)\left\{\begin{array} { l }
{ A x = b } \\
{ x \geq 0 }
\end{array} \quad (I I _ { p }) \left\{\begin{array}{l}
A^{T} y \leq 0 \\
b^{T} y>0
\end{array}\right.\right.
$$

Theorem 1.2: Weak Duality

For any primal-dual feasible solution pair (x, y), we have $c^{T} x \geq b^{T} y$. Moreover, $=$ holds iff

$$
x^{T}\left(A^{T} y-c\right)=0
$$

which is known as the complementary slackness condition.

Theorem 1.3: Strong Duality

Exactly one of the following could happen for a $(P)-(D)$ problem pair.

1. If both the primal and dual problems have a feasible solution, then for any optimal solutions \bar{x} and \bar{y}, we have $c^{T} \bar{x}=b^{T} \bar{y}$.
2. If the primal infeasible and the dual is feasible, then the dual is unbounded.
3. If the dual infeasible and the primal is feasible, then the primal is unbounded.
4. Both the primal and dual can be infeasible.

1.1 The equivalence of Farkas' Lemma and Strong Duality

First, let's consider when strong duality holds. Then consider the following case, (P) is infeasible with $c=0$ and (D) is feasible. Then, we know that (D) is unbounded. Therefore, we know that $\exists y^{*}$ such that $A^{T} y^{*} \leq 0$ and $b^{T} y^{*}>0$. This implies, when $\left(I I_{p}\right)$ is feasible, $\left(I_{p}\right)$ is infeasible.

Then we consider using Farkas' Lemma to prove Strong duality.

1. By weak duality, we have $c^{T} x \geq b^{T} y$, for any feasible solution pair (x, y). Now, we want to prove $b^{T} y \geq c^{T} x$. It's equivalent to prove the system (1.1) is feasible. So if (1.1) is feasible, then we have (1) in strong duality proved.

$$
\{\begin{array}{l}
-b^{T} y+c^{T} x+\rho=0, \rho \geq 0 \tag{1.1}\\
A x=b, x \geq 0 \\
A^{T} y+s=b, s \geq 0, y \text { is free. }
\end{array} \quad \underbrace{\left[\begin{array}{ccccc}
0 & 0 & A & 0 & 0 \\
-A^{T} & A^{T} & 0 & I & 0 \\
b^{T} & -b^{T} & c^{T} & 0 & 1
\end{array}\right]}_{\bar{A}} \underbrace{\left[\begin{array}{c}
y^{-} \\
y^{+} \\
x \\
s \\
\rho
\end{array}\right]}_{\bar{x}}=\underbrace{\left[\begin{array}{c}
b \\
c \\
0
\end{array}\right]}_{\bar{b}}
$$

2. Assume the system (1.1) is infeasible, then by Fakars' lemma, we know that the system (1.2) must be feasible.

$$
\left\{\begin{array}{l}
\bar{A}^{T} \bar{y} \leq 0 \tag{1.2}\\
\bar{b}^{T} \bar{y}>0
\end{array} \quad \text { where } \bar{y}=\left[\begin{array}{l}
u \in \mathbb{R}^{m} \\
v \in \mathbb{R}^{n} \\
l \in \mathbb{R}^{1}
\end{array}\right] \quad \Longrightarrow\left\{\begin{array}{l}
A v=b l \\
A^{T} u+c l \leq 0 \\
b^{T} u+c^{T} v>0 \\
v \leq 0, l \leq 0
\end{array}\right.\right.
$$

Set $\bar{l}=-l \geq 0, \bar{v}=-v \geq 0$. If $\bar{l}>0$. Then set $x=\frac{\bar{v}}{\bar{l}}, y=\frac{u}{l}$. It's easy to verify that (x, y) is a feasible primal-dual solution pair. But $b^{T} y=\frac{1}{l} b^{T} u>\frac{1}{l} c^{T} \bar{v}=c^{T} x$, which contradicts with the weak duality. This implies $\bar{l}=0$.
Provided $\bar{l}=0$, then (1.3) always holds.

$$
(1)\left\{\begin{array} { l }
{ A \overline { v } = 0 } \tag{1.3}\\
{ \overline { v } \geq 0 }
\end{array} \quad (2) \left\{\begin{array}{l}
A^{T} u \leq 0 \\
b^{T} u>c^{T} \bar{v}
\end{array}\right.\right.
$$

As (1) and (2) both hold, by Fakars' lemma, we know $c^{T} \bar{v} \neq 0$.

- $c^{T} \bar{v}<0$. Assume the primal is feasible and dual is infeasible. Consider a primal feasible solution x^{*}, then $x(\alpha)=x^{*}+\alpha \bar{v}$, where $\alpha>0$, is also a solution. Then $c^{T} x(\alpha)=c^{T} x^{*}+\alpha c^{T} \bar{v} \rightarrow-\infty$ as $\alpha \rightarrow+\infty$. Therefore, the primal is unbounded.
- $c^{T} \bar{v}>0$. This implies $b^{T} u>0$. Assume the dual is feasible and primal is infeasible. Consider a dual feasible solution y^{*}, then $y(\alpha)=y^{*}+\alpha u$, where $\alpha>0$, is also a solution. Then $b^{T} y(\alpha)=b^{T} y^{*}+\alpha b^{T} u \rightarrow$ $+\infty$ as $\alpha \rightarrow+\infty$. Therefore, the dual is unbounded.

So (2) and (3) in the strong duality theorem are proved. It remains to prove (4). Consider $A=0, c=-1$, $b=1$. In this case both (P) and (D) are infeasible.

1.2 Criss-cross Algorithm and the Strong Duality

From Theorem 1.4, we know that the Criss-cross algorithm terminates in finite steps.

1. If the Criss-cross algorithm terminates with feasible a primal-dual solution pair (x, y), then the complementary slack conditions hold. By the weak duality, we have $c^{T} x=b^{T} y$.
2. Suppose the Criss-cross algorithm terminates with following case.
p-th row $\left[\begin{array}{|l|l|l|l|l|}\hline & {\left[A_{B}^{-1}\right]_{p}} & & & \\\right.$\cline { 2 - 5 } \& - \& $\bigoplus & \cdots & \bigoplus \\$\cline { 2 - 5 } \& \& \& \&
 \hline\end{array}

Then we claim the primal is infeasible. This can be easily seen from fact that the sum of non-negative elements cannot be strictly negative. That is, the no $x \geq 0$ satisfies the p-th constraint.
Further, if we assume the dual is feasible. Let (\bar{y}, \bar{s}) be a dual feasible solution such that $A^{T} \bar{y}+\bar{s}=c, \bar{s} \geq 0$. We need to find a \hat{y} such that $b^{T} \hat{y}>0$. Then $b^{T} y(\alpha)=b^{T} \bar{y}+\alpha b^{T} \hat{y} \rightarrow+\infty$ as $\alpha \rightarrow+\infty$.
Let $\tilde{y}^{T}=\mathrm{p}$-th row of A_{B}^{-1}, then $\tilde{y}^{T} b<0, A^{T} \tilde{y} \geq 0$. Set $\hat{y}=-\tilde{y}$, then $b^{T} \hat{y}>0, A^{T} \hat{y} \geq 0^{1}$. Hence, the dual is unbounded.
3. Suppose the Criss-cross algorithm terminates with following case.

Then we claim the dual is infeasible. We prove this by using Farkas' lemma. Define

$$
t_{q}= \begin{cases}\tau_{i q}, & \mathrm{i} \text { in the basis } \\ -1, & \mathrm{i}=\mathrm{q} \\ 0, & \text { i not in the basis }\end{cases}
$$

we can see in the proof of Theorem 1.4 that $t_{q} \in \operatorname{Null}(A)$, i.e., $A t_{q}=0$. From the table, we know $t_{i q}=A_{B}^{-1} A[i, q] \leq 0, i$ in the basis.. Set $\hat{x}=-t_{q}$. Then $A \hat{x}=0, \hat{x} \geq 0$.

$$
\begin{aligned}
c^{T} \hat{x} & =c_{B}^{T} \hat{x}_{B}+C_{N}^{T} \hat{x}_{N} \\
& \stackrel{(1)}{=} c_{q}-c_{B}^{T}\left(A_{B}^{-1} A[:, q]\right) \\
& \stackrel{(2)}{=} s_{q}<0,
\end{aligned}
$$

where (1) holds as q not in the basis and (2) holds as $-s_{q}>0$ (from the tableau). Therefore, we have $c^{T} \hat{x}<0, A \hat{x}=0, \hat{x} \geq 0$, the by Farkas's lemma (dual form), we know $A^{T} y \leq c$ is infeasible.

[^0]Further, suppose the primal is feasible. Let \bar{x} be a primal feasible solution such that $A^{T} \bar{x}=b, \bar{x} \geq 0$. Since $c^{T} \hat{x}<0$, then $c^{T} x(\alpha)=c^{T} \bar{x}+\alpha c^{T} \hat{x} \rightarrow-\infty$ as $\alpha \rightarrow+\infty$.

Hence, the primal is unbounded.

1.3 Appendix 1: Farkas' Lemma and its variants

Recall the primal form defined in the Lemma 1.1

$$
\left(I_{p}\right)\left\{\begin{array} { l }
{ A x = b } \\
{ x \geq 0 }
\end{array} \quad (I I _ { p }) \left\{\begin{array}{l}
A^{T} y \leq 0 \\
b^{T} y>0
\end{array}\right.\right.
$$

It's essentially can be derived from the primal-dual problem pair

$$
\left\{\begin{array} { l c }
{ \operatorname { m i n } \quad c ^ { T } x } \\
{ \text { s.t } } & { A x = b } \\
{ } & { x \geq 0 , }
\end{array} \quad (P) \quad \left\{\begin{array}{l}
\max \quad b^{T} y \\
\text { s.t } \quad A^{T} y \leq c
\end{array} \quad(D)\right.\right.
$$

$\left(I_{p}\right)$ are just constriants from (P). The first constriant in $\left(I I_{p}\right)$ are derived by setting $c=0$, then plug it into the constraint from (D). As $c=0$, then the if (P) is feasible, the optimal is 0 . In order to construct contraditions, we require $b^{T} y>0$. As by weak duality we always have $b^{T} y \leq 0$. Then, we recover the second constraint.

As for the proof, if $\left(I_{p}\right)$ is feasible it is easy to see $\left(I I_{p}\right)$ is infeasible. If $\left(I_{p}\right)$ is in feasible, then b not in the cone(columns of A). By semperation theorem, we can set y to the norm vector of the seperating hyperplane, we have ($I I_{p}$) feasible.
An common variant is represented in the dual form,

$$
\left(I_{d}\right)\left\{\begin{array} { l }
{ A x = 0 } \\
{ x \geq 0 } \\
{ c ^ { T } x < 0 }
\end{array} \quad (I I _ { d }) \left\{\quad A^{T} y \leq c\right.\right.
$$

As for the proof, we can rewite them to the equivalent form of $\left(I_{p}\right)$ and $\left(I I_{p}\right)$. For example, denote $y=y^{+}-y^{-}$, and change $I I_{d}$ to

$$
\left(I I_{d}^{\prime}\right)\left\{\begin{array}{l}
{[A,-A, I]\left(\begin{array}{c}
y^{+} \\
y^{-} \\
s
\end{array}\right)=c} \\
y^{+}, y^{-}, s \geq 0
\end{array}\right.
$$

Then $\left(I I_{d}^{\prime}\right)$ is equivalent to I_{p}. Similarly, we can re-write I_{d} to the form of $I I_{p}$.

1.4 Appendix 2: Criss-Cross Algorithm

- Basic Tableau Setup

For a given coefficient matrix $A \in \mathbb{R}^{m \times n}, m<n$ and $\operatorname{Rank}(A)=m$, we can partition A as $A=\left[A_{B}, A_{N}\right]$, where A_{B} is invertible Denote $I_{B}=\left\{i \mid i\right.$ th column of A in the $\left.A_{B}\right\}, I_{N}=\{1, \cdots, n\} \backslash I_{B}$. We can rewrite the constraint in (D) as $A^{T} y+s=c$. Then, can partition c, s according to I_{B}, I_{N}, x, y respectively. Now, the solution pair (x, y) can be set to

$$
x_{B}=A_{B}^{-1} b, \quad x_{N}=\mathbf{0}, \quad s_{B}=0, \quad s_{N}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}
$$

$c_{B}^{T} A_{B}^{-1} b$	$-s_{B}^{T}=0$	$-s_{N}^{T}=-c_{N}^{T}+c_{B}^{T} A_{B}^{-1} A_{N}$
$x_{B}=A_{B}^{-1} b$	I	$A_{B}^{-1} A_{N}=\left(\tau_{i j}\right)$

- Pivot

The pivot step can be described as

$$
\begin{array}{rlrl}
I_{B}^{\prime} \leftarrow I_{B} \cup\{l\} \backslash\{k\} & \\
\tau_{i j}^{\prime} & =\tau_{i j}-\frac{\tau_{i l} \tau_{k j}}{\tau_{k l}} & \forall i \in I_{B}^{\prime} \backslash\{l\} ; j \in I_{N}^{\prime} \backslash\{k\} \\
\tau_{i k}^{\prime} & =-\frac{\tau_{i l}}{\tau_{k l}}, & \forall i \in I_{B}^{\prime} \backslash\{l\} \\
\tau_{l j}^{\prime} & =\frac{\tau_{k j}}{\tau_{k l}}, & \forall j \in I_{N} \backslash\{l\} \\
\tau_{l k}^{\prime} & =\frac{1}{\tau_{k l}} &
\end{array}
$$

- Criss-cross Algorithm Procedure

Initialization

let A_{B} be an arbitrary initial basis;
I_{B} resp. I_{N} is the index set of
the basis and nonbasis variables;
while true do
if $x_{B} \geq 0$ and $s_{N} \geq 0$ then
(I) else
$p:=\min \left\{i \in I_{B}: x_{i}<0\right\} ;$
$q:=\min \left\{j \in I_{N}: s_{j}<0\right\} ;$
$r:=\min \{p, q\} ;$
if $r=p$ then
if the p-row of the tableau is nonnegative then stop: (LP) is inconsistent;
else
let $q:=\min \left\{j \in I_{N}: \tau_{p j}<0\right\} ;$ endif
else (i.e. $r=q$) if the q-column of the tableau is nonpositive then stop: (LD) is inconsistent; else let $p:=\min \left\{i \in I_{B}: \tau_{i q}>0\right\}$; endif
endif
perform a pivot: $I_{B}:=I_{B} \cup\{q\} \backslash\{p\} ;$ endwhile
end.

Theorem 1.4

Criss-cross Algorithm terminates in finite steps.

Proof: Assume we will visit a basis twice, meaning we are trapped in a cycle. Denote $q=\max \{i \in$ $\{1,2, \cdots, n\} \mid i$ enters the basis during the cycle. $\}=\max \{i \in\{1,2, \cdots, n\} \mid i$ leaves the basis during the cycle. $\}$. From the figure, we know that x_{q} can only enter the basis via either pattern A or B. Similarly, x_{q} can only leave the basis via either pattern C or D .

It remains to prove that are of the following four situations are impossible.

1. $\mathrm{B} \Rightarrow \mathrm{D}$
2. $B \Rightarrow C$
3. $\mathrm{A} \Rightarrow \mathrm{D}$
4. $\mathrm{A} \Rightarrow \mathrm{C}$
$B \Rightarrow D$ case:
The matrix A can be partitioned as $A=\left[A_{B} \mid A_{n}\right]$, then we can get the coefficient matrix in the tableau $\left[I \mid A_{B}^{-1} A_{N}\right]$. So we know that $t_{p} \in \mathbb{R}^{1 \times n}$, where $p<q$, must be

$$
\left[t_{p}\right]_{j}= \begin{cases}0 & x_{j} \text { in the basis and } \mathrm{j} \neq p \\ 1 & j=p \\ \tau_{p j} & j \text { not in the basis }\end{cases}
$$

Similarly we can construct a $t_{k} \in \mathbb{R}^{n \times 1}$, where $k<q$, such that

$$
\left[t_{k}\right]_{i}= \begin{cases}0 & x_{i} \text { not in the basis and } \mathrm{i} \neq k(1) \\ -1 & i=k(2) \\ \tau_{i k} & i \text { in the basis }(3)\end{cases}
$$

(3) is directly from the tableau; (1) and (2) are constructed based the following fact

$$
\left[\begin{array}{ll}
I & A_{B}^{-1} A_{N}
\end{array}\right]\left[\begin{array}{c}
A_{B}^{-1} A_{N} \\
-I
\end{array}\right]=\mathbf{0}
$$

Therefore, we know that $\left\langle t_{k}, t_{p}\right\rangle=0$. From the figure below, and the facts that

1) the way we define t_{p} and t_{k};
2) If $j>p$, both sets $S_{1}=\left\{j \mid x_{j}\right.$ in the basis $\}, S_{2}=\left\{j \mid x_{j}\right.$ not in the basis $\}$ remain unchanged.

We know that $\left\langle t_{k}, t_{p}\right\rangle<0$. Contradiction! So $B \Rightarrow D$ is impossible.
$A \Rightarrow D$ case:
From above analysis, we already construct t_{k} such that $t_{k} \in \operatorname{Null}(A)$. So we want to find a vector in $\operatorname{row}(A)$.
Note that

$$
\left\{\begin{array}{l}
A^{T} y_{A}+\left(-S_{A}\right)=c \\
A^{T} y_{D}+\left(-S_{D}\right)=c
\end{array}\right.
$$

we know $S \triangleq S_{A}-S_{D}=A^{T}\left(y_{A}-y_{D}\right)$. Therefore, $\left\langle t_{k}, S\right\rangle=0$.

0 if the indices are in the basis
k
t_{k}

0 if the indices are NOT in the basis

Similarly as the previous case, for $j>q, x_{j}$ will be always [in/not in] basis when $A \Rightarrow D$.

- $\left\langle S_{A}, t_{k}\right\rangle=\underbrace{\text { non-negative }}_{j<q}+\underbrace{\text { positive }}_{j=q}+\underbrace{0}_{j>q}=$ positive
- $\left\langle S_{D}, t_{k}\right\rangle=\underbrace{0}_{j<q, j \neq k}+\underbrace{\text { negative }}_{j=k}+\underbrace{0}_{j \geq q}=$ negative

Therefore, $\left\langle S_{A}-S_{D}, t_{k}\right\rangle=$ positive, Hence, contradiction!
$B \Rightarrow C$ case:

Consider the solution from tableau C and B and denote them as X_{C} and X_{B}. Then we know that $A X_{C}=b, A X_{B}=b$, (here we abuse the notation X_{B},i.e., not the basic solution part.) So $X_{C}-X_{B} \in \operatorname{Null}(A)$. As $t_{p} \in \operatorname{Row}(A)$, we know that $\left\langle X_{C}-X_{B}, t_{p}\right\rangle=0$.

- $\left\langle X_{C}, t_{p}\right\rangle=\underbrace{\text { non-negative }}_{j<q}+\underbrace{\text { positive }}_{j=q}+\underbrace{0}_{j>q}=$ positive
- Based on the fact that X_{B}, t_{p} are from the same tableau,

$$
\left\langle S_{D}, t_{k}\right\rangle=\underbrace{0}_{j<q, j \neq p}+\underbrace{\text { negative }}_{j=p}+\underbrace{0}_{j=q}+\underbrace{0}_{j \geq q}=\text { negative }
$$

Therefore, $\left\langle X_{C}-X_{B}, t_{p}\right\rangle=$ positive, Hence, contradiction!
$\mathrm{A} \Rightarrow \mathrm{C}$

Based on the same reasons used before, we know that
$X_{A}-X_{C} \in \operatorname{Null}(A), S_{A}-S_{C} \in \operatorname{Row}(A)$, hence $\left\langle X_{A}-X_{C}, S_{A}-S_{C}\right\rangle=0$.

- As S_{A}, X_{C} from the same tableau, we know that $\left\langle X_{A}, S_{A}\right\rangle=0$. Similarly, $\left\langle X_{C}, S_{C}\right\rangle=0$
- $\left\langle X_{A}, S_{C}\right\rangle=$ non-positive, and $\left\langle X_{C}, S_{A}\right\rangle=$ negative

So we know that $\left\langle X_{A}-X_{C}, S_{A}-S_{C}\right\rangle>0$. Hence, contradiction!
To sum up, cycling is impossible during the criss-cross algorithm, hence terminating in finite steps.

[^0]: ${ }^{1}$ This again implies the primal is infeasible from the Farkas' lemma.

