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Consider the following primal-dual problem


min cTx

s.t Ax = b (P )
x ≥ 0,

{
max bT y

s.t AT y ≤ c (D).

Correspondingly, we have following version of Farkas’ Lemma

Lemma 1.1: Farkas’ Lemma (Primal Form)
One and only one of the following two systems of linear inequalities has a feasible solution.

(Ip)
{

Ax = b

x ≥ 0
(IIp)

{
AT y ≤ 0
bT y > 0

.

Theorem 1.2: Weak Duality
For any primal-dual feasible solution pair (x, y), we have cTx ≥ bT y. Moreover, = holds iff

xT (AT y − c) = 0,

which is known as the complementary slackness condition.

Theorem 1.3: Strong Duality
Exactly one of the following could happen for a (P )− (D) problem pair.

1. If both the primal and dual problems have a feasible solution, then for any optimal solutions x̄
and ȳ, we have cT x̄ = bT ȳ.

2. If the primal infeasible and the dual is feasible, then the dual is unbounded.

3. If the dual infeasible and the primal is feasible, then the primal is unbounded.

4. Both the primal and dual can be infeasible.

1.1 The equivalence of Farkas’ Lemma and Strong Duality

First, let’s consider when strong duality holds. Then consider the following case, (P ) is infeasible
with c = 0 and (D) is feasible. Then, we know that (D) is unbounded. Therefore, we know that ∃ y∗ such
that AT y∗ ≤ 0 and bT y∗ > 0. This implies, when (IIp) is feasible, (Ip) is infeasible.
Then we consider using Farkas’ Lemma to prove Strong duality.
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1. By weak duality, we have cTx ≥ bT y, for any feasible solution pair (x, y). Now, we want to prove
bT y ≥ cTx. It’s equivalent to prove the system (1.1) is feasible. So if (1.1) is feasible, then we have (1)
in strong duality proved.


−bT y + cTx+ ρ = 0, ρ ≥ 0
Ax = b, x ≥ 0
AT y + s = b, s ≥ 0, y is free.

=⇒

 0 0 A 0 0
−AT AT 0 I 0
bT −bT cT 0 1


︸ ︷︷ ︸

Ā


y−

y+

x
s
ρ


︸ ︷︷ ︸
x̄

=

bc
0


︸︷︷︸
b̄

(1.1)

2. Assume the system (1.1) is infeasible, then by Fakars’ lemma, we know that the system (1.2) must be
feasible.

{
ĀT ȳ ≤ 0
b̄T ȳ > 0

where ȳ =

u ∈ Rm
v ∈ Rn
l ∈ R1

 =⇒


Av = bl

ATu+ cl ≤ 0
bTu+ cT v > 0
v ≤ 0, l ≤ 0

(1.2)

Set l̄ = −l ≥ 0, v̄ = −v ≥ 0. If l̄ > 0. Then set x = v̄
l̄
, y = u

l̄
. It’s easy to verify that (x, y) is a feasible

primal-dual solution pair. But bT y = 1
l̄
bTu > 1

l̄
cT v̄ = cTx, which contradicts with the weak duality. This

implies l̄ = 0.

Provided l̄ = 0, then (1.3) always holds.

1O
{

Av̄ = 0
v̄ ≥ 0

2O
{

ATu ≤ 0
bTu > cT v̄

(1.3)

As 1O and 2O both hold, by Fakars’ lemma, we know cT v̄ 6= 0.

• cT v̄ < 0. Assume the primal is feasible and dual is infeasible. Consider a primal feasible solution x∗,
then x(α) = x∗ + αv̄, where α > 0, is also a solution. Then cTx(α) = cTx∗ + αcT v̄ → −∞ as α→ +∞.
Therefore, the primal is unbounded.

• cT v̄ > 0. This implies bTu > 0. Assume the dual is feasible and primal is infeasible. Consider a dual
feasible solution y∗, then y(α) = y∗+αu, where α > 0, is also a solution. Then bT y(α) = bT y∗+αbTu→
+∞ as α→ +∞. Therefore, the dual is unbounded.

So (2) and (3) in the strong duality theorem are proved. It remains to prove (4). Consider A = 0, c = −1,
b = 1. In this case both (P) and (D) are infeasible.
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1.2 Criss-cross Algorithm and the Strong Duality

From Theorem 1.4, we know that the Criss-cross algorithm terminates in finite steps.

1. If the Criss-cross algorithm terminates with feasible a primal-dual solution pair (x, y), then the
complementary slack conditions hold. By the weak duality, we have cTx = bT y.

2. Suppose the Criss-cross algorithm terminates with following case.

p-th row [A−1
B ]p −

⊕
· · ·

⊕

Then we claim the primal is infeasible. This can be easily seen from fact that the sum of non-negative
elements cannot be strictly negative. That is, the no x ≥ 0 satisfies the p-th constraint.

Further, if we assume the dual is feasible. Let (ȳ, s̄) be a dual feasible solution such that AT ȳ + s̄ = c, s̄ ≥ 0.
We need to find a ŷ such that bT ŷ > 0. Then bT y(α) = bT ȳ + αbT ŷ → +∞ as α→ +∞.

Let ỹT =p-th row of A−1
B , then ỹT b < 0, AT ỹ ≥ 0. Set ŷ = −ỹ, then bT ŷ > 0, AT ŷ ≥ 01. Hence, the dual is

unbounded.

3. Suppose the Criss-cross algorithm terminates with following case.

q-th row
+
	
...
	

A−1
B A[:, q]

Then we claim the dual is infeasible. We prove this by using Farkas’ lemma. Define

tq =


τiq, i in the basis
−1, i=q
0, i not in the basis

,

we can see in the proof of Theorem 1.4 that tq ∈ Null(A), i.e., Atq = 0. From the table, we know
tiq = A−1

B A[i, q] ≤ 0, i in the basis.. Set x̂ = −tq. Then Ax̂ = 0, x̂ ≥ 0.

cT x̂ = cTBx̂B + CTN x̂N
(1)= cq − cTB(A−1

B A[:, q])
(2)= sq < 0,

where (1) holds as q not in the basis and (2) holds as −sq > 0 (from the tableau). Therefore, we have
cT x̂ < 0, Ax̂ = 0, x̂ ≥ 0, the by Farkas’s lemma (dual form), we know AT y ≤ c is infeasible.

1This again implies the primal is infeasible from the Farkas’ lemma.
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Further, suppose the primal is feasible. Let x̄ be a primal feasible solution such that AT x̄ = b, x̄ ≥ 0. Since
cT x̂ < 0, then cTx(α) = cT x̄+ αcT x̂→ −∞ as α→ +∞.

Hence, the primal is unbounded.

1.3 Appendix 1: Farkas’ Lemma and its variants

Recall the primal form defined in the Lemma 1.1

(Ip)
{

Ax = b

x ≥ 0
(IIp)

{
AT y ≤ 0
bT y > 0

.

It’s essentially can be derived from the primal-dual problem pair


min cTx

s.t Ax = b (P )
x ≥ 0,

{
max bT y

s.t AT y ≤ c (D).

(Ip) are just constriants from (P ). The first constriant in (IIp) are derived by setting c = 0, then plug it
into the constraint from (D). As c = 0, then the if (P ) is feasible, the optimal is 0. In order to construct
contraditions, we require bT y > 0. As by weak duality we always have bT y ≤ 0. Then, we recover the second
constraint.

As for the proof, if (Ip) is feasible it is easy to see (IIp) is infeasible. If (Ip) is in feasible, then b not in the
cone(columns of A). By semperation theorem, we can set y to the norm vector of the seperating hyperplane,
we have (IIp) feasible.

An common variant is represented in the dual form,

(Id)


Ax = 0
x ≥ 0
cTx < 0

(IId)
{

AT y ≤ c .

As for the proof, we can rewite them to the equivalent form of (Ip) and (IIp). For example, denote y = y+−y−,
and change IId to

(II ′d)


[A,−A, I]

y+

y−

s

 = c

y+, y−, s ≥ 0.

.

Then (II ′d) is equivalent to Ip. Similarly, we can re-write Id to the form of IIp.

1.4 Appendix 2: Criss-Cross Algorithm

• Basic Tableau Setup
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For a given coefficient matrix A ∈ Rm×n,m < n and Rank(A) = m, we can partition A as A = [AB , AN ],
where AB is invertible Denote IB = {i|ith column of A in theAB}, IN = {1, · · · , n}\IB . We can rewrite the
constraint in (D) as AT y + s = c. Then, can partition c, s according to IB , IN , x, y respectively. Now, the
solution pair (x, y) can be set to

xB = A−1
B b, xN = 0, sB = 0, sN = cTN − cTBA−1

B AN .

cTBA
−1
B b −sTB = 0 −sTN = −cTN + cTBA

−1
B AN

xB = A−1
B b I A−1

B AN = (τij)

• Pivot

The pivot step can be described as

I ′B← IB ∪ {l}\{k}

τ ′ij= τij −
τilτkj
τkl

∀i ∈ I ′B\{l}; j ∈ I ′N\{k}

τ ′ik = − τil
τkl

, ∀i ∈ I ′B\{l}

τ ′lj = τkj
τkl

, ∀j ∈ IN\{l}

τ ′lk = 1
τkl

j l j k

i τij τil i τ ′ij τ ′ik
Pivot on τkl=⇒

k τkj τkl l τ ′lj τ ′lk

• Criss-cross Algorithm Procedure
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Choose the first primal 
Infeasible index p Choose the dual primal 

Infeasible index q

p

Pivot

Basic Tableau
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Theorem 1.4
Criss-cross Algorithm terminates in finite steps.

Proof: Assume we will visit a basis twice, meaning we are trapped in a cycle. Denote q = max{i ∈
{1, 2, · · · , n}|i enters the basis during the cycle.} = max{i ∈ {1, 2, · · · , n}|i leaves the basis during the cycle.}.
From the figure, we know that xq can only enter the basis via either pattern A or B. Similarly, xq can only
leave the basis via either pattern C or D.

It remains to prove that are of the following four situations are impossible.

1. B⇒ D
2. B⇒ C
3. A⇒ D
4. A⇒ C

B⇒ D case:

The matrix A can be partitioned as A = [AB | An], then we can get the coefficient matrix in the tableau
[I | A−1

B AN ]. So we know that tp ∈ R1×n, where p < q, must be
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[tp]j =


0 xj in the basis and j 6= p

1 j = p

τpj j not in the basis

Similarly we can construct a tk ∈ Rn×1, where k < q, such that

[tk]i =


0 xi not in the basis and i 6= k (1)
−1 i = k (2)
τik i in the basis (3).

(3) is directly from the tableau; (1) and (2) are constructed based the following fact

[
I A−1

B AN
] [A−1

B AN
−I

]
= 0.

Therefore, we know that 〈tk, tp〉 = 0. From the figure below, and the facts that

1) the way we define tp and tk;
2) If j > p, both sets S1 = {j|xj in the basis}, S2 = {j|xj not in the basis} remain unchanged.

We know that 〈tk, tp〉 < 0. Contradiction! So B ⇒ D is impossible.

A⇒ D case:

From above analysis, we already construct tk such that tk ∈ Null(A). So we want to find a vector in row(A).

Note that

{
AT yA + (−SA) = c

AT yD + (−SD) = c,

we know S
∆= SA − SD = AT (yA − yD). Therefore, 〈tk, S〉 = 0.
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Similarly as the previous case, for j > q, xj will be always [in/not in] basis when A⇒ D.

• 〈SA, tk〉 = non-negative︸ ︷︷ ︸
j<q

+positive︸ ︷︷ ︸
j=q

+ 0︸︷︷︸
j>q

= positive

• 〈SD, tk〉 = 0︸︷︷︸
j<q,j 6=k

+negative︸ ︷︷ ︸
j=k

+ 0︸︷︷︸
j≥q

= negative

Therefore, 〈SA − SD, tk〉 = positive, Hence, contradiction!

B⇒ C case:

Consider the solution from tableau C and B and denote them as XC and XB. Then we know that
AXC = b, AXB = b, (here we abuse the notation XB ,i.e., not the basic solution part.) So XC−XB ∈ Null(A).
As tp ∈ Row(A), we know that 〈XC −XB , tp〉 = 0.

• 〈XC , tp〉 = non-negative︸ ︷︷ ︸
j<q

+ positive︸ ︷︷ ︸
j=q

+ 0︸︷︷︸
j>q

= positive
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• Based on the fact that XB , tp are from the same tableau,

〈SD, tk〉 = 0︸︷︷︸
j<q,j 6=p

+negative︸ ︷︷ ︸
j=p

+ 0︸︷︷︸
j=q

+ 0︸︷︷︸
j≥q

= negative

Therefore, 〈XC −XB , tp〉 = positive, Hence, contradiction!

A⇒ C

Based on the same reasons used before, we know that

XA −XC ∈ Null(A), SA − SC ∈ Row(A), hence 〈XA −XC , SA − SC〉 = 0.

• As SA, XC from the same tableau, we know that 〈XA, SA〉 = 0. Similarly, 〈XC , SC〉 = 0

• 〈XA, SC〉 = non-positive, and 〈XC , SA〉 = negative

So we know that 〈XA −XC , SA − SC〉 > 0. Hence, contradiction!

To sum up, cycling is impossible during the criss-cross algorithm, hence terminating in finite steps.
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