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General setup

min
x∈Rn

f (x) + r(x)

• f : loss function; convex and differentiable:
• r : group sparsity inducing regularizer r(x) = K∑

i=1

λi‖xGi‖2

Motivation
If we can somehow predict zero components of the solution
x∗, we can use more efficient second-order method to solve a
smooth problem in a low dimension space.
Contribution
•Partitioned variables in a way that incorporates the support
prediction property of the PG method and tackles the chal-
lenge that the gradient of the function being optimized in the
reduced space is not Lipschitz continuous.

•Designed a specialized projection procedure for the group `1-
norm regularizer that allows us to prove convergence guaran-
tees and obtain strong numerical performance.

•Proved a worst-case iteration complexity bound with a simple
but principled way of adjusting the PG step size that allows for
support identification in finite iterations.
Algorithm

Full-length paper!

1.Proximal gradient direction helps toidentify the low-dimensionmanifold infinite many number of steps and canbe used to do subspace decomposi-tion.
x̃k+1← argminx∈Rn

{
1
2αk
‖x −

(
xk − αk∇f (xk)

)
‖22 + r(x)

}
2.Specialized backtracking line-searchscheme with projection promotes thesparsity of iterates and speeds up theconvergence.

[xk]Gi

ρk := ‖[∇Icg
k
(f(xk) + r(xk))‖

κρρk

0

[dk]Icg
k

[xk]Gi

⇢k := krIcg
k

(f(xk) + r(xk))k

⇢⇢k

0
[dk]Gi
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Complexity results
Theorem 1 (worst-case complexity). For
ε ∈ (0,∞), the maximum number of
iterations before max{χcgk , χ

pg
k } ≤ ε is

O
(
Kε−(2+p)

)
.

Theorem 2 (local convergence rate).The
sequence {xk} converges to the unique
minimizer x∗ at a superlinear / quadratic
rate, depending on how accurately we
solve the reduced Newton system.

Theorem 3 (support identification). Let
S∗ := {i : [x∗]Gi 6= 0}. For all sufficiently
large k , it holds that

[xk]Gi 6= 0 for all i ∈ S∗
[xk]Gi = 0 for all i /∈ S∗.

Experiments
•Total of 200/120 problem instances for
logistic/linear regression problems;
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Conclusion
•New framework for optimization
problems with group-sparse regular-
ization. Scalable, fast, efficient

•Global convergence with the worst-
case complexity result

•Fast local convergence
•State-of-the-art performance


