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General setup
min  f(x) + r(x)
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Motivation

If we can somehow predict zero components of the solution
x*, we can use more efficient second-order method to solve a

smooth problem in a low dimension space.
Contribution

e Partitioned variables in a way that incorporates the support
prediction property of the PG method and tackles the chal-
lenge that the gradient of the function being optimized in the
reduced space is not Lipschitz continuous.

e Designed a specialized projection procedure for the group ¢;-

norm regularizer that allows us to prove convergence guaran-

tees and obtain strong numerical performance.

e Proved a worst-case iteration complexity bound with a simple
but principled way of adjusting the PG step size that allows for
support identification in finite iterations.

Algorithm

Algorithm 1 Fast Reduced-Space Algorithm for Group Sparsity (FaRSA-Group)

fork=0,1,2,... do
Compute the PG direction s;..

Divide the groups {G;} into two sets: How?|
I;f := {the groups that you think are nonzero at a solution}
I;:g := {the groups that you think are zero at a solution}

Define measures of optimality:
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Terminate if max{xff, xig} < €.
if x;* < x;° then
Select I C I:F‘
Apply CG method on reduced Newton system Hid &= —gi to obtain dk.
Perform a reduced space projected line search using the direction d;.. How?|
else
Select I;, C I7%.
Perform a reduced space backtracking Armijo linesearch along the direction [sj]; L o
end if
Compute PG parameter op .
end for
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Full-length paper!

1.Proximal gradient direction helps to
identify the low-dimension manifold in
finite many number of steps and can
be used to do subspace decomposi-
tion.

Xk+1 <= arg Minyege {Q%WHX — (Xk — Oéka(Xk)) 15+ r(x)}

2.Specialized backtracking line-search
scheme with projection promotes the
sparsity of iterates and speeds up the
convergence.
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Complexity results

Theorem 1 (worst-case complexity). For
e € (0,00), the maximum number of
iterations before max{x;”, X'} < € is
O (Ke(2TP)).

Theorem 2 (local convergence rate). The
sequence {xx} converges to the unique
minimizer x* at a superlinear / quadratic
rate, depending on how accurately we
solve the reduced Newton system.

Theorem 3 (support identification). Let
S. = {1 : |[x]g # 0}. For dall sufficiently
large k, it holds that

[xklg. # O forall i € S,

[xk]g. = Oforall i & S..
Experiments
e Total of 200/120 problem instances for

logistic/linear regression problems;

Metric: computational time

8

-log2(ratio)

Conclusion

e New framework for optimization
problems with group-sparse regular-
ization. Scalable, fast, efficient

e Global convergence with the worst-
case complexity result

e Fast local convergence

e State-of-the-art performance



