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Introduction

Motivation

Regularized learning problems are ubiquitous in machine learning and sparse
solutions are often preferred and obtained via nonsmooth regularizers.
Full gradient evaluation in large‐scale problems or online‐learning problems are
prohibitive, hence the mainstream uses stochastic gradient‐type methods with
variance reduction. Yet, most variance reduction techniques require at least
one full gradient evaluation or the storage of a stochastic gradient table.

Problem Setting

min
x∈Rn

F (x) := f (x) + r(x).

f (x) := Eξ∼P [ℓ(x; ξ)] population loss with ξ ∼ P
ℓ(·, ξ) is a smooth convex function almost surely w.r.t the distribution of ξ

r is a sparsity‐promoting convex function with a group separable structure

Support Identification and Consistent Support Identification

Group Structure:
⋃nG

i=1 gi = n and gi ∩ gj = ∅ for all i ∈ [nG].

Support of x: S(x) = {i ∈ [nG] | [x]gi ̸= 0}.

Support Identification Property: For any sufficiently large k, S(xk) = S(x∗)
holds with high probability (w.h.p.), i.e., P{S(xk) = S(x∗)} ≥ p.

Consistent Support Identification Property: For all sufficiently large k,
S(xk) = S(x∗) holds w.h.p., i.e., P{∩k≥K{S(xk) = S(x∗)}} ≥ p.

Contributions

Propose variance reduction method S-PStorm with neither any exact gradient
evaluation nor storage of a stochastic gradient table.

Establish the consistent support identification property of S-PStorm, which is
stronger than the support identification property of RDA.

Show better performances of S-PStorm over RDA on a class of test problems.

Algorithm ∥xk − x∗∥2 Support Identification # Exact ∇f Storage
ProxSVRG O

(
ρk

ProxSVRG
)

O(log(1/δ∗)) every epoch O(n)
SAGA O

(
ρk

SAGA
)

O(log(1/δ∗)) once O(Nn)

RDA O(log k/k) O
(

1
(δ∗)4

)
never O(n)

S-PStorm O(log k/k) O
(

max
{

1
(δ∗)4,

1
(∆∗)4

})
never O(n)

Algorithm

Algorithm 1 S-PStorm
1: Inputs: Initial point x0 = x1 ∈ Rn, size of mini‐batch m ∈ N+, weight sequence
{βk}k≥2 ⊂ (0, 1), stepsize sequence {αk} ⊂ (0,∞), and parameter ζ ∈ (0,∞).

2: for k = 1, 2, . . . , do
3: Draw m i.i.d samples {ξk1, · · · , ξkm} w.r.t. P .
4: Set vk ← 1

m

∑m
i=1∇ℓ(xk; ξki).

5: if k = 1 then
6: Set dk ← vk.
7: else
8: Set uk ← 1

m

∑m
i=1∇ℓ(xk−1; ξki).

9: Set dk ← vk + (1− βk)(dk−1 − uk). Storm estimator
10: end if
11: Compute yk ← proxαkr (xk − αkdk). support inexact prox operator evaluation
12: Set xk+1← xk + ζβk(yk − xk). stabilization step
13: end for

Assumptions

Filtration: A random process Fk up to time k over the stochastic gradient sampling procedure.

1. Unbiased Stochastic Gradient: Eξ∼P [∇ℓ(xk; ξ) | Fk] = ∇f (xk).
2. Bounded subdifferential: There exists Gr > 0 such that, P{∥gr∥2 ≤ Gr, ∀gr ∈ ∂r(xk)} = 1.
3. Bounded errors: There exists σ > 0 such that Pξ∼P{∥∇ℓ(xk, ξ)−∇f (xk)∥ ≤ σ | Fk} = 1.
4. Bounded steps: There exists Gd > 0 such that Pξ∼P{∥dk∥ ≤ Gd | Fk} = 1.
5. Convexity: f is µf‐strongly convex and ri is convex and closed for all i ∈ [nG].
6. Smooth loss: ∇ℓ(·, ·) is Lipschtiz continuous with respect to the first argument.
7. Algorithmic choices: βk = min{1/2, c/(k + 1)} and αk ≡ α with c > 1 and α ∈ (0,∞).

Variance Reduction

Define the error in the gradient estimator as ϵk = dk −∇f (xk). With c > 0, ηk > 0,

U(k) = C
(
σ + Lg(Gr + Gd)ζα

)
·max

{(
k + 1
k + 2

)c

,
c√

k + 2

}√
log 2

ηk
,

then P [∥ϵk∥ ≤ U(k)] ≥ 1− ηk for all k ≥ k = ⌈(2c)− 1⌉.
If ηk = η0/k2 for all k ≥ 1, then error ϵk vanishes at the rate of O(

√
log k/k) w.h.p..

Convergence of the Iterates

Let κ = Lg/µf , α = 1/(κLg), ζ ∈ (0, 2), c = 2κ2/ζ , k = ⌈2c− 1⌉, and ηk = η0/k2 for all k ≥ 1 with
η0 ∈ (0, 6/π2). Let (c̄1, c̄2) be some positive constants independent of k.

Let Ex
k :=

{
∥xk − x∗∥2 ≤ c̄1

∥xk−x∗∥2

kθ + c̄2 ·
log 2k

η0
k

}
, then P

[⋂∞
k≥k E

x
k

]
≥ 1− η0π2/6 > 0.

∥xk − x∗∥ vanishes at the rate of O(
√

log k/k) w.h.p. .

Consistent Support Identification

Assume x∗ is neither fully dense nor all zero, then

∆∗ = min
i∈S(x∗)

∥∥[x∗]gi

∥∥ , δ∗ = min
i ̸∈S(x∗)

{λi −
∥∥∇gif (x∗)

∥∥}.
Define kδ∗ = (C41/δ∗)4, k∆∗ = (C42/∆∗)4, and Kid = max{kδ∗, k∆∗, k} with positive constants {C41, C42}
that are independent of k. Then P

[⋂
k≥Kid

{S(yk) = S(x∗)}
]
≥ 1− η0π2

6 > 0.

Experiments

Test Problems: 80 test instances derived from 10 datasets from the LIBSVM collection
with various solution sparsity levels and group structures.

min
x∈Rn

1
N

N∑
j=1

log
(

1 + e−yjxT dj

)
+ 10−5∥x∥2 +

nG∑
i=1

λi

∥∥[x]gi

∥∥
Convergence of Iterates and Variance Reduction.
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Typical behavior of how fast the ∥xk − x∗∥ (left) and gradient error ∥ϵk∥ (right) con‐
verge to 0 for competing methods. S-PStorm performs better than RDA.

Solution Quality: Measure optimal function value gap.
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Support Identification: Rank scores of four metrics measuring performance: 1) total
epochs that support identification occurs, 2) the first epoch that yk identifies the
correct support, 3) the first epoch after which yk consistently identifies the correct
support, and 4) the percentage of support S(x∗) recovered by the final yk.

total identification first identification first consistent identification last iterate support recovery
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