

Introduction

Motivation

- Regularized learning problems are ubiquitous in machine learning and sparse solutions are often preferred and obtained via nonsmooth regularizers.
- Full gradient evaluation in large-scale problems or online-learning problems are prohibitive, hence the mainstream uses stochastic gradient-type methods with variance reduction. Yet, most variance reduction techniques require at least one full gradient evaluation or the storage of a stochastic gradient table.

Problem Setting

$$\min_{x \in \mathbb{R}^n} F(x) := f(x) + r(x).$$

- $f(x) := \mathbb{E}_{\xi \sim \mathcal{P}}[\ell(x;\xi)]$ population loss with $\xi \sim \mathcal{P}$
- $\ell(\cdot,\xi)$ is a smooth convex function almost surely w.r.t the distribution of ξ
- r is a sparsity-promoting convex function with a group separable structure

Support Identification and Consistent Support Identification

- Group Structure: $\bigcup_{i=1}^{n_{\mathcal{G}}} g_i = n$ and $g_i \cap g_j = \emptyset$ for all $i \in [n_{\mathcal{G}}]$.
- Support of x: $\mathcal{S}(x) = \{i \in [n_{\mathcal{G}}] \mid [x]_{q_i} \neq 0\}.$
- Support Identification Property: For any sufficiently large k, $\mathcal{S}(x_k) = \mathcal{S}(x^*)$ holds with high probability (w.h.p.), i.e., $\mathbb{P}\{\mathcal{S}(x_k) = \mathcal{S}(x^*)\} \ge p$.
- Consistent Support Identification Property: For all sufficiently large k, $\mathcal{S}(x_k) = \mathcal{S}(x^*)$ holds w.h.p., i.e., $\mathbb{P}\{\cap_{k>K}\{\mathcal{S}(x_k) = \mathcal{S}(x^*)\}\} \ge p$.

Contributions

- Propose variance reduction method S-PStorm with neither any exact gradient evaluation nor storage of a stochastic gradient table.
- Establish the consistent support identification property of S-PStorm, which is stronger than the support identification property of RDA.
- Show better performances of S-PStorm over RDA on a class of test problems.

Algorithm	$ x_k - x^* ^2$	Support Identification	# Exact V
ProxSVRG	$\mathcal{O}\left(ho_{\mathtt{ProxSVRG}}^k ight)$	$\mathcal{O}(\log(1/\delta^*))$	every epo
SAGA	$\mathcal{O}\left(ho_{\mathtt{SAGA}}^{k} ight)$	$\mathcal{O}(\log(1/\delta^*))$	once
RDA	$\mathcal{O}(\log k/k)$	$\mathcal{O}\left(\frac{1}{(\delta^*)^4}\right)$	never
S-PStorm	$\mathcal{O}(\log k/k)$	$\mathcal{O}\left(\max\left\{\frac{1}{(\delta^*)^4}, \frac{1}{(\Delta^*)^4}\right\}\right)$	never

A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Lehigh University¹

National University of Singapore²

Algorithm

Algorithm 1 S-PStorm
1: Inputs: Initial point $x_0 = x_1 \in \mathbb{R}^n$, size of r
$\{\beta_k\}_{k\geq 2} \subset (0,1)$, stepsize sequence $\{\alpha_k\} \subset (0,1)$
2: for $k = 1, 2,, do$
3: Draw m i.i.d samples $\{\xi_{k1}, \cdots, \xi_{km}\}$ w.r.t. \mathcal{F}
4: Set $v_k \leftarrow \frac{1}{m} \sum_{i=1}^m \nabla \ell(x_k; \xi_{ki})$.
5: if $k = 1$ then
6: Set $d_k \leftarrow v_k$.
7: else
8: Set $u_k \leftarrow \frac{1}{m} \sum_{i=1}^m \nabla \ell(x_{k-1}; \xi_{ki}).$
9: Set $d_k \leftarrow v_k + (1 - \beta_k)(d_{k-1} - u_k)$.
10: end if
11: Compute $y_k \leftarrow \operatorname{prox}_{\alpha_k r} (x_k - \alpha_k d_k)$. sup
12: Set $x_{k+1} \leftarrow x_k + \zeta \beta_k (y_k - x_k)$.
13: end for

Assumptions

Filtration: A random process \mathcal{F}_k up to time k over the stochastic gradient sampling procedure.

- 1. Unbiased Stochastic Gradient: $\mathbb{E}_{\xi \sim \mathcal{P}} \left[\nabla \ell(x_k; \xi) \mid \mathcal{F}_k \right] = \nabla f(x_k).$
- 2. Bounded subdifferential: There exists $G_r > 0$ such that, $\mathbb{P}\{\|g_r\|_2 \leq G_r, \forall g_r \in \partial r(x_k)\} = 1$.
- 3. Bounded errors: There exists $\sigma > 0$ such that $\mathbb{P}_{\xi \sim \mathcal{P}}\{\|\nabla \ell(x_k, \xi) \nabla f(x_k)\| \le \sigma \mid \mathcal{F}_k\} = 1$.
- 4. Bounded steps: There exists $G_d > 0$ such that $\mathbb{P}_{\xi \sim \mathcal{P}} \{ \|d_k\| \leq G_d \mid \mathcal{F}_k \} = 1$.
- Convexity: f is μ_f -strongly convex and r_i is convex and closed for all $i \in [n_G]$.
- 6. Smooth loss: $\nabla \ell(\cdot, \cdot)$ is Lipschtiz continuous with respect to the first argument.
- 7. Algorithmic choices: $\beta_k = \min\{1/2, c/(k+1)\}$ and $\alpha_k \equiv \underline{\alpha}$ with c > 1 and $\underline{\alpha} \in (0, \infty)$.

Variance Reduction

Define the er

From in the gradient estimator as
$$\epsilon_k = d_k - \nabla f(x_k)$$
. With $c > 0$, $\eta_k > 0$,
 $U(k) = C\left(\sigma + L_g(G_r + G_d)\zeta\underline{\alpha}\right) \cdot \max\left\{\left(\frac{\underline{k} + 1}{k+2}\right)^c, \frac{c}{\sqrt{k+2}}\right\}\sqrt{\log\frac{2}{\eta_k}},$
 $\leq U(k) \geq 1 - \eta_k$ for all $k \geq \underline{k} = \lceil (2c) - 1 \rceil.$

then $\mathbb{P}\left[\| \epsilon_k \| \right]$

• If $\eta_k = \eta_0/k^2$ for all $k \ge 1$, then error ϵ_k vanishes at the rate of $\mathcal{O}(\sqrt{\log k/k})$ w.h.p..

Convergence of the Iterates

•	Let $\kappa = L_g/\mu_f$, $\underline{\alpha} = 1/(\kappa L_g)$, $\zeta \in (0,2)$, $c = 2\kappa^2/\zeta$, $\underline{k} =$
	$\eta_0 \in (0, 6/\pi^2)$. Let (\bar{c}_1, \bar{c}_2) be some positive constants
•	Let $\mathcal{E}_{k}^{x} := \left\{ \ x_{k} - x^{*}\ ^{2} \le \bar{c}_{1} \frac{\ x_{k} - x^{*}\ ^{2}}{k^{\theta}} + \bar{c}_{2} \cdot \frac{\log \frac{2k}{\eta_{0}}}{k} \right\}$, the

• $||x_k - x^*||$ vanishes at the rate of $\mathcal{O}(\sqrt{\log k/k})$ w.h.p.

Consistent Support Identification

Assume x^* is neither fully dense nor all zero, then

 $\Delta^* = \min_{i \in \mathcal{S}(x^*)} \left\| [x^*]_{g_i} \right\|, \delta^* = \min_{i \notin \mathcal{S}(x^*)}$

Define $k_{\delta^*} = (C_{41}/\delta^*)^4$, $k_{\Delta^*} = (C_{42}/\Delta^*)^4$, and $K_{id} = \max\{k_{\delta^*}, k_{\Delta^*}, \underline{k}\}$ with positive constants $\{C_{41}, C_{42}\}$ that are independent of k. Then $\mathbb{P}\left[\bigcap_{k\geq K_{\text{id}}} \{\mathcal{S}(y_k) = \mathcal{S}(x^*)\}\right] \geq 1 - \frac{\eta_0 \pi^2}{6} > 0.$

Yutong Dai¹ Guanyi Wang² Frank E. Curtis¹ Daniel P. Robinson¹

nini-batch $m \in \mathbb{N}_+$, weight sequence ∞), and parameter $\zeta \in (0, \infty)$.

Storm estimator

port inexact **prox** operator evaluation stabilization step

[2c-1], and $\eta_k = \eta_0/k^2$ for all $k \ge 1$ with independent of k. hen $\mathbb{P}\left[\bigcap_{k\geq \underline{k}}^{\infty}\mathcal{E}_{k}^{x}\right]\geq 1-\eta_{0}\pi^{2}/6>0.$

$$\{\lambda_i - \left\| \nabla_{g_i} f(x^*) \right\| \}.$$

- Information Processing Systems, vol. 22, 2009. Machine Learning Research, vol. 13, no. 6, 2012.
- Optimization, vol. 24, no. 4, pp. 2057–2075, 2014.

Experiments

[3] L. Xiao, "Dual averaging method for regularized stochastic learning and online optimization," Advances in Neural

[4] S. Lee and S. J. Wright, "Manifold identification in dual averaging for regularized stochastic online learning.," *Journal of*

[5] A. Defazio, F. Bach, and S. Lacoste-Julien, "Saga: A fast incremental gradient method with support for non-strongly convex composite objectives," Advances in neural information processing systems, vol. 27, 2014.

[6] L. Xiao and T. Zhang, "A proximal stochastic gradient method with progressive variance reduction," SIAM Journal on