Tackling Data Heterogeneity in Federated Learning with Class Prototypes

Yutong Dai¹ Zeyuan Chen² Junnan Li² Shelby Heinecke² Lichao Sun¹ Ran Xu²

Lehigh University¹ Salesforce Research²

Feburary, 2023

Washington, DC, USA

Outline

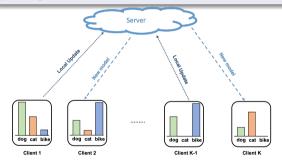
- Problem
- 2 Methodology
 - A Motivating Example
 - Proposed Method
- Numerical Results
 - Class Semantics
 - Accuracy

Outline

- Problem
- Methodology
 - A Motivating Example
 - Proposed Method
- Numerical Results
 - Class Semantics
 - Accuracy

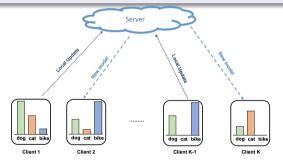
Introduction

Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from **decentralized data**, motivated by and designed for **privacy** protection.



Introduction

Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from **decentralized data**, motivated by and designed for **privacy** protection.



Address data heterogeneity with a particular focus on class imbalance.

Introduction (Cont'd)

Classic Problem Formulation

$$F^{\text{ERM}}(\boldsymbol{x}) = \sum_{i=1}^{\mathcal{M}} p_i F_i^{\text{ERM}}(\boldsymbol{x}); \quad \text{where } F_i^{\text{ERM}}(\boldsymbol{x}) = \frac{1}{jD_i j} \sum_{2D_i}^{X} f_i(\boldsymbol{x};) \text{ and } \sum_{i=1}^{\mathcal{M}} p_i = 1$$

- Across clients: Heterogeneous data distribution leads to inconsistent local objective functions, which imposes challenges into the optimization process.
- Within a client: Imbalanced data makes the local model likely to overfit dominant classes.

Introduction (Cont'd)

Classic Problem Formulation

$$F^{\text{ERM}}(\boldsymbol{x}) = \sum_{i=1}^{\mathcal{M}} p_i F_i^{\text{ERM}}(\boldsymbol{x}); \quad \text{where } F_i^{\text{ERM}}(\boldsymbol{x}) = \frac{1}{jD_i j} \sum_{2D_i}^{X} f_i(\boldsymbol{x};) \text{ and } \sum_{i=1}^{\mathcal{M}} p_i = 1$$

- Across clients: Heterogeneous data distribution leads to inconsistent local objective functions, which imposes challenges into the optimization process.
- Within a client: Imbalanced data makes the local model likely to overfit dominant classes.

Personalized federated learning comes to the rescue.

Brief Literature Review

- Personalized federated learning
 - goal: tailor personalized models to client-speci c tasks;
 - methods: parameter decoupling, regularization, model interpolation, and more¹;
 - parameter decoupling: body (representation learning) + head (classification task).
- Class-imbalance learning
 - data-level: Over-sampling minority classes or under-sampling majority classes
 - algorithm-level:
 - \bullet sample-wise 2 or class-wise 3 class-balanced losses;
 - decoupling the training procedure into the representation learning and classification phases⁴.

¹ Alysa Ziying Tan et al. "Towards personalized federated learning". In: IEEE Transactions on Neural Networks and Learning Systems (2022).

²Tsung-Yi Lin et al. "Focal loss for dense object detection". In: *Proceedings of the IEEE international conference on computer vision*. 2017, pp. 2980–2988.

 $^{^3\}mathrm{Yin}$ Cui et al. "Class-balanced loss based on effective number of samples". In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 9268–9277.

⁴Bingyi Kang et al. "Decoupling Representation and Classifier for Long-Tailed Recognition". In: International Conference on Learning Representations, 2019.

Brief Literature Review

- Class-imbalance learning + FL
 - CReFF¹ adapts the idea of² into FL setting while observing the privacy.
 - FedROD³ designs a two-head-one-body architecture, where one head is trained with class-balanced loss while the other head is trained with empirical loss.

¹Xinyi Shang et al. "Federated Learning on Heterogeneous and Long-Tailed Data via Classifier Re-Training with Federated Features". In: arXiv preprint arXiv:2204.13399 (2022).

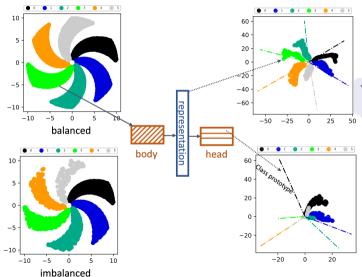
²Bingyi Kang et al. "Decoupling Representation and Classifier for Long-Tailed Recognition". In: International Conference on Learning Representations. 2019.

³Hong-You Chen and Wei-Lun Chao. "On Bridging Generic and Personalized Federated Learning for Image Classification". In: International Conference on Learning Representations. 2021.

Outline

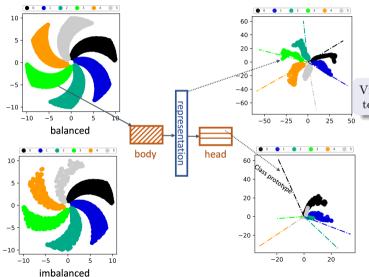
- Problem
- Methodology
 - A Motivating Example
 - Proposed Method
- Numerical Results
 - Class Semantics
 - Accuracy

Centralized Training on A Toy Dataset



Visualization is over the same **balanced** testing dataset for a fully trained MLP.

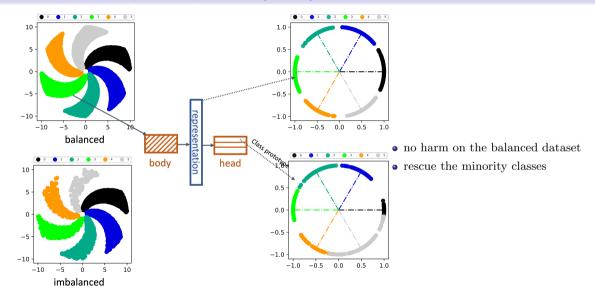
Centralized Training on A Toy Dataset



Visualization is over the same balanced testing dataset for a fully trained MLP.

- Balanced Dataset
 - uniformly distributed class prototypes
 - separated representations
- Imbalanced Dataset
 - crowded class prototypes
 - overlapped representations

Centralized Training on A Toy Dataset (Cont'd)



FL with A Toy Dataset

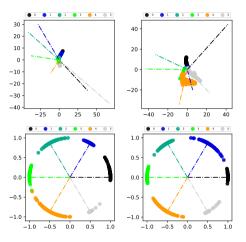


Figure: Top: Visualization of representations and prototypes on two of FedAvg clients. Bottom: Visualization of representations and prototypes (xed at prior and never updated) on the same two of FedAvg clients.

Uniformity in Class Prototypes

Initialization Strategy

$$\max_{f w_1; \quad ; w_{j \in J}; Mg} M^2$$
s.t. $kw_i \quad w_j k^2 \quad M^2; kw_i k^2 = 1 \text{ for all } i \ 2 \left[|\mathcal{C}| \right]; i \in j$:

- Can be solved with any constrained optimization solver, e.g., interior point method.
- Need only to be solved once.
- The solution can be approximated with an orthonormal base, which is similar to FedBABU⁴.

(AAAI 2023)

⁴ Jaehoon Oh, SangMook Kim, and Se-Young Yun. "FedBABU: Toward Enhanced Representation for Federated Image Classification". In: International Conference on Learning Representations, 2021.

Uniformity in Class Prototypes

Initialization Strategy

$$\max_{f w_1; \quad : w_{jCj}: Mg} M^2$$
s.t. $kw_i \quad w_j k^2 \quad M^2; kw_i k^2 = 1 \text{ for all } i \geq [jC]; i \neq j$: (1)

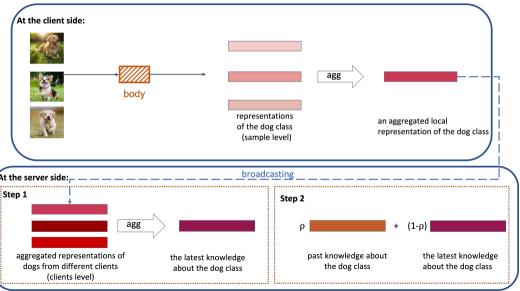
- Can be solved with any constrained optimization solver, e.g., interior point method.
- Need only to be solved once.
- The solution can be approximated with an orthonormal base, which is similar to FedBABU⁴.

However, this is not enough...

(AAAI 2023)

⁴ Jaehoon Oh, SangMook Kim, and Se-Young Yun. "FedBABU: Toward Enhanced Representation for Federated Image Classification". In: International Conference on Learning Representations, 2021.

Infuse Class Semantics



12: end for

Algorithm FedNH - Skeleton

```
1: Initialization: the body ; the head W \supseteq \mathbb{R}^{|C|} \stackrel{d}{\circ};
2: for t = 0; \dots; \mathbb{R} 1 communication rounds do
3: Select a subset of clients S^t.
4: ...
5: for each selected client k \supseteq S^t in parallel do
6: t = t + 1, t + 1, t + 1, t + 1 ClientUpdate(t : W^t). t = t + 1, t + 1, t + 1, t + 1 ClientUpdate(t : W^t). t = t + 1, t
```

Convergence Result

Theorem 1 (Informal)

Let the kth client uniformly at random returns an element from $f_k^{t;j}g$ as the solution, denoted as f_k . Further, let W share the same round index as f_k . Then for any $f_k^{t;j}g$ as the solution, denoted as f_k . Further, let $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ and $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ and $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ and $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ and $f_k^{t;j}g$ and $f_k^{t;j}g$ and $f_k^{t;j}g$ as the solution, denoted as $f_k^{t;j}g$ and $f_k^{t;j}g$

h E
$$kr$$
 $F_k(\ _k; W\)k^2$

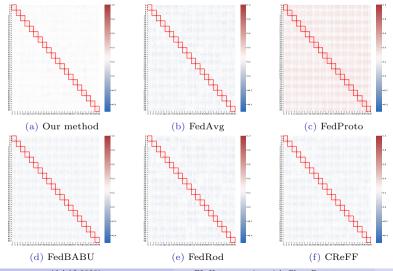
where $_{1}(\ ;M_{G};M_{f}),\ _{2}(\ ;L_{g};\ ^{2};\ ;M_{G};M_{f}),\ M_{G},\ and\ M_{f}\ are\ some\ positive\ constants.$

Outline

- Problem
- Methodology
 - A Motivating Example
 - Proposed Method
- Numerical Results
 - Class Semantics
 - Accuracy

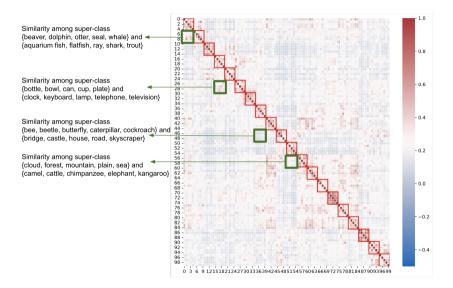
Learned Class Semantics

Visualize the pair-wise cosine similarity of class prototypes on Cifar100.



- Cifar100 has 20 super-classes.
- Each block along the diagonal contains 5 sub-classes within one super-class.

Learned Class Semantics (Cont'd)



Classification Accuracy

Dataset	Method		Dir(0.3)			Dir(1.0)	
		GM	PM(V)	PM(L)	GM	PM(V)	PM(L)
Cifar100	Local FedAvg FedPer Ditto FedRep FedProto CReFF FedBABU FedROD FedNH	$\begin{array}{c} -\\ 35.14 \pm 0.48 \\ 15.04 \pm 0.06 \\ 35.14 \pm 0.48 \\ 5.42 \pm 0.03 \\ -\\ 22.90 \pm 0.30 \\ 32.41 \pm 0.40 \\ 33.83 \pm 0.25 \\ 41.34 \pm 0.25 \\ \end{array}$	$\begin{array}{c} 13.63 \pm 2.45 \\ \underline{31.85 \pm 1.33} \\ 16.15 \pm 2.34 \\ \underline{26.19 \pm 1.11} \\ 13.59 \pm 2.31 \\ 10.64 \pm 1.02 \\ \underline{31.85 \pm 1.33} \\ \underline{28.96 \pm 2.16} \\ \underline{28.53 \pm 1.27} \\ \underline{38.25 \pm 1.23} \end{array}$	$\begin{array}{c} 30.89 \pm 1.82 \\ \underline{50.77 \pm 2.31} \\ 33.10 \pm 1.50 \\ 45.91 \pm 2.17 \\ 29.45 \pm 2.45 \\ 19.11 \pm 1.75 \\ 50.77 \pm 2.31 \\ 47.86 \pm 1.03 \\ 42.93 \pm 1.03 \\ 55.21 \pm 2.11 \end{array}$	$\begin{matrix} -& & \\ 36.07 \pm 0.41 \\ 14.69 \pm 0.03 \\ 36.07 \pm 0.41 \\ 6.37 \pm 0.04 \\ \hline -& \\ 22.21 \pm 0.15 \\ 32.34 \pm 0.49 \\ 35.20 \pm 0.19 \\ 43.19 \pm 0.24 \end{matrix}$	$\begin{array}{c} 9.44 \pm 1.27 \\ 28.86 \pm 1.23 \\ \hline 11.61 \pm 2.17 \\ 22.92 \pm 1.77 \\ 9.47 \pm 2.27 \\ 9.24 \pm 1.33 \\ \hline 28.86 \pm 1.23 \\ \hline 25.84 \pm 1.44 \\ \hline 27.58 \pm 1.98 \\ \hline 36.88 \pm 1.15 \\ \end{array}$	$\begin{array}{c} 16.71 \pm 1.03 \\ 38.35 \pm 2.11 \\ 19.08 \pm 1.36 \\ 32.81 \pm 2.16 \\ 16.07 \pm 1.27 \\ 12.61 \pm 1.78 \\ 38.35 \pm 2.11 \\ 34.85 \pm 1.80 \\ 33.44 \pm 1.76 \\ 45.46 \pm 2.14 \end{array}$

Metric: the accuracy of the *i*th personalized model is computed as

$$\operatorname{acc}_{i} = \frac{P}{(x_{j} : y_{j}) \quad D^{\operatorname{test}} \quad i (y_{j}) \mathbf{1} (y_{j} = \hat{y}_{j})}{(x_{j} : y_{j}) \quad D^{\operatorname{test}} \quad i (y_{j})}.$$

- D^{test} is a unified and balanced dataset.
- PM(L): $_{i}(y)$ to 1 if the class y appears in ith client's training dataset and 0 otherwise.
- PM(V): $i(y) = P_i(y = c)$, the probability of the sample y is from class c in the ith client.
- \bullet \hat{y} is the predicted value and 1() is the indicator function.

Summary

- We proposed FedNH to address the data heterogeneity with class imbalance. FedNH combines the uniformity and semantics of class prototypes to learn high-quality representations for classification.
- Our idea currently only applies to the classification task, and the inductive bias from uniformity and semantics of class prototypes can only be imposed on the head of neural network architecture.

Thank you and Questions?

Contact: yud319@lehigh:edu

