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Problem

Problem of Interest

Sparse optimization pr

K
min  f(z)+r(x) with T(x):Z)\ingng (x>0, G c{1,...,n})
i=1

@ f: loss function, assumed to be convex and differentiable:
- logistic regression: f(z) = % Zjil log(1 + e’yiszi)

o r: sparsity inducing regularizer is convex and nonsmooth:

K
- group sparsity: r(z) = Z Aillzg; |lp for p € [1,00)
i=1
problems arise in signal processing and machine learning applications
- jointly select genes that regulate hormone levels

sparsity in group structure imposes more optimization challenges
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Algorithm

Overview

Two Pillars

@ space decomposition
o Predict zero and non-zero groups of the solution z*

@ subspace acceleration
e Utilize second order information to improve convergence rate

o Design a projected line search scheme to promote the sparsity of iterates
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Algorithm

Space decomposition

Proximal Gradient (PG) Direction

@ choose PG parameter ay > 0
@ compute PG direction

51 < arg ‘2%3 {i”m — (2r — arV f(z)) I3 + r(z)} — Tk

Properties:
o Repeated computation of s; recovers PG iterates

e The support of a PG iterate matches with that of x* after finite #iterations

Use s to do space decomposition.
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Algorithm

Subspace acceleration

Reduced Newton System

@ Pick a subset [, C {1,2,--- ,n} s.t. all groups of variables in [; are non-zero.
@ Set gr < Vz, (f + r)(zx) and pick a positive-definite Hy € RIZel*1 Tkl

@ Obtain an inexact Newton direction di by solving

Hydy, = —gk
with a CG method equipped with early termination rules. )
Properties:
o The iterates {z;} (under assumptions) converges to z* at a
superlinear /quadratic rate.
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Algorithm

Algorithmic Framework

Algorithm Fast Reduced-Space Algorithm for Group Sparsity (FaRSA-Group)

for k=0,1,2,... do
Compute the PG direction sg.
Divide the groups {G;} into two sets: [How?]

7,% := {the groups that you think are nonzero at a solution}
7% := {the groups that you think are zero at a solution}

Define measures of optimality:

XpE = and x}E =

[Sk}zzg [Sk]zig
Terminate Cif max{x;%, x} 5} < e
if xP8 < x& then
Select I}, C T,%.
Apply CG method on reduced Newton system Hyd =~ —g;, to obtain dy.
Perform a reduced space projected line search using the direction dj. [How?]
else
Select I}, C 7%,
Perform a reduced space backtracking Armijo linesearch along the direction [sg]s, -
end if
Compute PG parameter ajyq.
end for
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Algorithm

T% and TP

e 7,® consists of all group of variables that are currently
- non-zero
- sufficiently far away from zero
1. taking an unit-step along the s; remains non-zero

2. distance to 0 proportional to the first order optimality measure

®

o TP ={1,2,...,n}\ I®
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Algorithm

Projected backtracking line search

[K]g,

i = [I[Vz (f () + () pr = IV (f () + ()|

(a) The reduced Newton-CG direction does not (b) The reduced Newton-CG direction does

intersect the red sphere. intersect the red sphere.

Figure: Projected backtrack lines search along the Newton-CG direction reduced-space .
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Convergence Results

Global

Assumptions:
e f and r are convex, proper, and closed
e fis a C! function with Vf Lipschitz continuous
o f + r is bounded below

Theorem 1 (worst-case complexity)

For e € (0,00), the mazimum number of iterations before max{x%, xx*} < € is

10) (E*(2+p))

Remark: For PG, the worst case complexity is O (5_2).
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Convergence Results

Local

Assumptions:
e f is strongly convex, a C? function, and V2 is Lipschitz continuous

e non-degeneracy: ||[Vf(x«)]g;ll2 < As for all ¢ such that [z.]g, = 0.

Theorem 2 (support identification)

Let S, := {i : [z+]g, # 0}. For all sufficiently large k, it holds that

[zk]g, # 0 for alli € Si and [zk)g, =0 for alli ¢ S..

Theorem 3 (local convergence rate)

The sequence {x} converges to the unique minimizer =* at a superlinear / quadratic
rate, depending on how accurately we solve the reduced Newton system.

v
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Numerical Results

Setup

25 binary classification datasets from LIBSVM
2 sparsity levels:

-\ = 0.1>\min\/@
- = 0.01)\min\/@

where
Amin = min{A > 0: the solution with A\; = A\/|G;| is = = 0}

4 different settings for the number of groups:

number of groups € {[0.25n],|0.50n], |0.75n],n},

Total of 200 problem instances are tested
Compare our algorithm FaRSA-Group([1]) vs. gglasso([2])

Max allowed time: 1000 seconds.
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Numerical Results

Numerical results

Metric: computational time

Il FaRSA-Group
7.5 EE gglasso

-log2(ratio)

T
0 20 40 60 80 100

Figure: Performance profile of CPU time (seconds) on problem instances for which at least
one algorithm takes at least 1 second.

@ the height of the bar given by
(time required by FaRSA—Group)
— log, - -
time required by gglasso

(1)
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Numerical Results

Conclusions

New framework for optimization problems with group-sparse regularization.

- scalable: reduced-space subproblems
- fast, efficient: reduced-space Newton-CG computation

Global convergence with worst-case complexity result.

Fast local convergence.

o State-of-the-art performance.
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Numerical Results
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Q&A

Newton-CG direction

@ Define the model
mi(d) == gi d+ 1d" Hyd

@ Compute the reference direction (an approximate minimizer of mg) as
R 2, T
di, < —Brgr, where Bi < [|gkll2/(gx Hrgr)

@ Choose yuy € (0,1] and then compute any dy ~ argmin my(d) that satisfies
d

g di < g dy
mi(dy) < mg(0) and
| Hrdr + grll2 < pxllgx |2
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Q&A
T and 7P

@ Calculate a candidate set
Lt :={j €Gi: [m]g, #0, [zx +silg, #0, and
[[zk]g:lle = 1l Vo, (f + ) (@)ll2}
for some k1 € (0,00).

@ Secondary screening
I = {5 € Gi: G: C T3 and ||faele,ll2 < | Vs (f + 1) (@)} (3)

for some {x2,p} C (0,00)
@ Finalize _
I}(C:g o I;g \Izmall
e = {1,2,...,n}\ I,;®
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