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Problem

Problem of Interest

Sparse optimization problem

min
x∈Rn

f(x) + r(x) with r(x) =
K∑
i=1

λi‖xGi
‖2

(
λi > 0, Gi ⊂ {1, . . . , n}

)
f : loss function, assumed to be convex and differentiable:

- logistic regression: f(x) = 1
N

∑N

i=1 log(1 + e−yix
T di )

r: sparsity inducing regularizer is convex and nonsmooth:

- group sparsity: r(x) =
K∑
i=1

λi‖xGi
‖p for p ∈ [1,∞)

problems arise in signal processing and machine learning applications
- jointly select genes that regulate hormone levels

sparsity in group structure imposes more optimization challenges
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Algorithm

Overview

Two Pillars
1 space decomposition

Predict zero and non-zero groups of the solution x∗

2 subspace acceleration
Utilize second order information to improve convergence rate
Design a projected line search scheme to promote the sparsity of iterates
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Algorithm

Space decomposition

Proximal Gradient (PG) Direction
1 choose PG parameter αk > 0
2 compute PG direction

sk ← arg min
x∈Rn

{
1

2αk
‖x−

(
xk − αk∇f(xk)

)
‖22 + r(x)

}
− xk

Properties:
Repeated computation of sk recovers PG iterates
The support of a PG iterate matches with that of x∗ after finite #iterations

Use sk to do space decomposition.

(Lehigh University) FaRSA-Group 11/12/2020 5 / 17



Algorithm

Subspace acceleration

Reduced Newton System
1 Pick a subset Ik ⊂ {1, 2, · · · , n} s.t. all groups of variables in Ik are non-zero.
2 Set gk ← ∇Ik (f + r)(xk) and pick a positive-definite Hk ∈ R|Ik|×|Ik|.
3 Obtain an inexact Newton direction dk by solving

Hkdk ≈ −gk

with a CG method equipped with early termination rules.

Properties:
The iterates {xk} (under assumptions) converges to x∗ at a
superlinear/quadratic rate.
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Algorithm

Algorithmic Framework

Algorithm Fast Reduced-Space Algorithm for Group Sparsity (FaRSA-Group)
for k = 0, 1, 2, . . . do

Compute the PG direction sk.
Divide the groups {Gi} into two sets: [How?]

Icg
k

:= {the groups that you think are nonzero at a solution}
Ipg
k

:= {the groups that you think are zero at a solution}

Define measures of optimality:

χcg
k

:=
∥∥∥[sk]Icg

k

∥∥∥
2

and χpg
k

:=
∥∥∥[sk]Ipg

k

∥∥∥
2

Terminate if max{χcg
k
, χpg
k
} ≤ ε.

if χpg
k
≤ χcg

k
then

Select Ik ⊆ Icg
k

.
Apply CG method on reduced Newton system Hkd ≈ −gk to obtain dk.
Perform a reduced space projected line search using the direction dk. [How?]

else
Select Ik ⊆ Ipg

k
.

Perform a reduced space backtracking Armijo linesearch along the direction [sk]Ik
.

end if
Compute PG parameter αk+1.

end for
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Algorithm

Icg
k and Ipg

k

Icg
k consists of all group of variables that are currently

- non-zero

- sufficiently far away from zero
1. taking an unit-step along the sk remains non-zero
2. distance to 0 proportional to the first order optimality measure

Ipg
k = {1, 2, . . . , n} \ Icg

k
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Algorithm

Projected backtracking line search

[xk]Gi

ρk := ‖[∇Icg
k
(f(xk) + r(xk))‖

κρρk

0

[dk]Icg
k

(a) The reduced Newton-CG direction does not
intersect the red sphere.

[xk]Gi

⇢k := krIcg
k

(f(xk) + r(xk))k

⇢⇢k

0
[dk]Gi

(b) The reduced Newton-CG direction does
intersect the red sphere.

Figure: Projected backtrack lines search along the Newton-CG direction reduced-space .
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Convergence Results

Global

Assumptions:
f and r are convex, proper, and closed
f is a C1 function with ∇f Lipschitz continuous
f + r is bounded below

Theorem 1 (worst-case complexity)

For ε ∈ (0,∞), the maximum number of iterations before max{χcg
k , χ

pg
k } ≤ ε is

O
(
ε−(2+p))

Remark: For PG, the worst case complexity is O
(
ε−2).
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Convergence Results

Local

Assumptions:
f is strongly convex, a C2 function, and ∇2f is Lipschitz continuous
non-degeneracy: ‖[∇f(x∗)]Gi‖2 < λi for all i such that [x∗]Gi = 0.

Theorem 2 (support identification)
Let S∗ := {i : [x∗]Gi 6= 0}. For all sufficiently large k, it holds that

[xk]Gi 6= 0 for all i ∈ S∗ and [xk]Gi = 0 for all i /∈ S∗.

Theorem 3 (local convergence rate)
The sequence {xk} converges to the unique minimizer x∗ at a superlinear / quadratic
rate, depending on how accurately we solve the reduced Newton system.
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Numerical Results

Setup

25 binary classification datasets from LIBSVM
2 sparsity levels:

- λi = 0.1λmin
√
|Gi|

- λi = 0.01λmin
√
|Gi|

where
λmin = min{λ ≥ 0: the solution with λi = λ

√
|Gi| is x = 0}

4 different settings for the number of groups:

number of groups ∈ {b0.25nc, b0.50nc, b0.75nc, n},

Total of 200 problem instances are tested
Compare our algorithm FaRSA-Group([1]) vs. gglasso([2])
Max allowed time: 1000 seconds.
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Numerical Results

Numerical results
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Figure: Performance profile of CPU time (seconds) on problem instances for which at least
one algorithm takes at least 1 second.

the height of the bar given by

− log2

( time required by FaRSA-Group
time required by gglasso

)
(1)
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Numerical Results

Conclusions

New framework for optimization problems with group-sparse regularization.
- scalable: reduced-space subproblems
- fast, efficient: reduced-space Newton-CG computation

Global convergence with worst-case complexity result.
Fast local convergence.
State-of-the-art performance.
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Numerical Results
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Q&A

Newton-CG direction

1 Define the model
mk(d) := gTk d+ 1

2d
THkd

2 Compute the reference direction (an approximate minimizer of mk) as

dRk ← −βkgk, where βk ← ‖gk‖22/(gTkHkgk)

3 Choose µk ∈ (0, 1] and then compute any dk ≈ argmin
d

mk(d) that satisfies

gTk dk ≤ gTk dRk
mk(dk) ≤ mk(0) and

‖Hkdk + gk‖2 ≤ µk‖gk‖q2
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Q&A

Icg
k and Ipg

k

How to choose?
1 Calculate a candidate set

Īcg
k := {j ∈ Gi : [xk]Gi 6= 0, [xk + sk]Gi 6= 0, and

‖[xk]Gi‖2 ≥ κ1‖∇Gi (f + r)(xk)‖2}
(2)

for some κ1 ∈ (0,∞).
2 Secondary screening

Ismall
k := {j ∈ Gi : Gi ⊆ Īcg

k and ‖[xk]Gi‖2 < κ2‖∇Īcg
k

(f + r)(xk)‖p2} (3)

for some {κ2, p} ⊂ (0,∞)
3 Finalize

Icg
k := Īcg

k \ I
small
k

Ipg
k := {1, 2, . . . , n} \ Icg

k

(4)
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