A Subspace Acceleration Framework For Minimization Involving a Group Sparsity-Inducing Regularizer

Frank E. Curtis¹ Yutong Dai¹ Daniel P. Robinson¹

¹Industrial and Systems Engineering, Lehigh University

INFORMS Annual Meeting 2020

11/12/2020

Outline

1 Problem

2 Algorithm

3 Convergence Results

(Lehigh University)

Problem

Problem of Interest

Sparse optimization problem

$$\min_{\mathbf{t}\in\mathbb{R}^n} f(\mathbf{x}) + r(\mathbf{x}) \quad \text{with} \quad r(\mathbf{x}) = \sum_{i=1}^K \lambda_i \|x_{\mathcal{G}_i}\|_2 \quad \left(\lambda_i > 0, \ \mathcal{G}_i \subset \{1,\ldots,n\}\right)$$

- f: loss function, assumed to be convex and differentiable:
 - logistic regression: $f(x) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i x^T d_i})$
- r: sparsity inducing regularizer is convex and nonsmooth:

- group sparsity:
$$r(x) = \sum_{i=1}^{K} \lambda_i ||x_{\mathcal{G}_i}||_p$$
 for $p \in [1, \infty)$

- problems arise in signal processing and machine learning applications
 - jointly select genes that regulate hormone levels
- sparsity in group structure imposes more optimization challenges

Overview

Two Pillars

space decomposition

• Predict zero and non-zero groups of the solution x^\ast

2 subspace acceleration

- Utilize second order information to improve convergence rate
- Design a projected line search scheme to promote the sparsity of iterates

Space decomposition

Proximal Gradient (PG) Direction

- choose PG parameter $\alpha_k > 0$
- e compute PG direction

$$s_k \leftarrow \arg\min_{x\in\mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k \nabla f(x_k))\|_2^2 + r(x) \right\} - x_k$$

Properties:

- Repeated computation of s_k recovers PG iterates
- $\bullet\,$ The support of a PG iterate matches with that of x^* after finite #iterations

Use s_k to do space decomposition.

Reduced Newton System

- Pick a subset $I_k \subset \{1, 2, \dots, n\}$ s.t. all groups of variables in I_k are non-zero.
- **2** Set $g_k \leftarrow \nabla_{\mathcal{I}_k}(f+r)(x_k)$ and pick a positive-definite $H_k \in \mathbb{R}^{|\mathcal{I}_k| \times |\mathcal{I}_k|}$.
- **3** Obtain an inexact Newton direction d_k by solving

 $H_k \mathbf{d}_k \approx -g_k$

with a CG method equipped with early termination rules.

Properties:

• The iterates $\{x_k\}$ (under assumptions) converges to x^* at a superlinear/quadratic rate.

Algorithmic Framework

Algorithm Fast Reduced-Space Algorithm for Group Sparsity (FaRSA-Group)

for k = 0, 1, 2, ... do Compute the PG direction s_k . Divide the groups $\{\mathcal{G}_i\}$ into two sets:

> $\mathcal{I}_k^{\text{cg}} := \{ \text{the groups that you think are nonzero at a solution} \}$ $\mathcal{I}_k^{\text{pg}} := \{ \text{the groups that you think are zero at a solution} \}$

Define measures of optimality:

$$\chi_k^{\mathrm{cg}} := \left\| [s_k]_{\mathcal{I}_k^{\mathrm{cg}}} \right\|_2 \quad \text{and} \quad \chi_k^{\mathrm{pg}} := \left\| [s_k]_{\mathcal{I}_k^{\mathrm{pg}}} \right\|_2$$

Terminate if $\max\{\chi_k^{cg}, \chi_k^{pg}\} \le \epsilon$. if $\chi_k^{pg} \le \chi_k^{cg}$ then

Select $I_k \subseteq \mathcal{I}_k^{\mathrm{cg}}$.

Apply CG method on reduced Newton system $H_k d \approx -g_k$ to obtain d_k .

Perform a reduced space projected line search using the direction d_k . [How?] else

Select $I_k \subseteq \mathcal{I}_k^{\mathrm{pg}}$.

Perform a reduced space backtracking Armijo lines earch along the direction $[s_k]_{I_k}$. end if

Compute PG parameter α_{k+1} .

end for

[How?]

- \mathcal{I}_k^{cg} consists of all group of variables that are currently
 - non-zero
 - *sufficiently* far away from zero
 - 1. taking an unit-step along the s_k remains non-zero
 - 2. distance to 0 proportional to the first order optimality measure

• $\mathcal{I}_k^{\mathrm{pg}} = \{1, 2, \dots, n\} \setminus \mathcal{I}_k^{\mathrm{cg}}$

Projected backtracking line search

(a) The reduced Newton-CG direction does not intersect the red sphere.

(b) The reduced Newton-CG direction does intersect the red sphere.

Figure: Projected backtrack lines search along the Newton-CG direction reduced-space .

Global

Assumptions:

- $\bullet~f$ and r are convex, proper, and closed
- f is a C^1 function with ∇f Lipschitz continuous
- f + r is bounded below

Theorem 1 (worst-case complexity)

For $\epsilon \in (0,\infty)$, the maximum number of iterations before $\max\{\chi_k^{cg},\chi_k^{pg}\} \leq \epsilon$ is

$$\mathcal{O}\left(\epsilon^{-(2+p)}\right)$$

Remark: For PG, the worst case complexity is $\mathcal{O}(\epsilon^{-2})$.

Local

Assumptions:

- f is strongly convex, a C^2 function, and $\nabla^2 f$ is Lipschitz continuous
- non-degeneracy: $\|[\nabla f(x_*)]_{\mathcal{G}_i}\|_2 < \lambda_i$ for all *i* such that $[x_*]_{\mathcal{G}_i} = 0$.

Theorem 2 (support identification)

Let $S_* := \{i : [x_*]_{\mathcal{G}_i} \neq 0\}$. For all sufficiently large k, it holds that

 $[x_k]_{\mathcal{G}_i} \neq 0 \text{ for all } i \in \mathcal{S}_* \text{ and } [x_k]_{\mathcal{G}_i} = 0 \text{ for all } i \notin \mathcal{S}_*.$

Theorem 3 (local convergence rate)

The sequence $\{x_k\}$ converges to the unique minimizer x^* at a superlinear / quadratic rate, depending on how accurately we solve the reduced Newton system.

Setup

- 25 binary classification datasets from LIBSVM
- 2 sparsity levels:

-
$$\lambda_i = 0.1 \lambda_{\min} \sqrt{|\mathcal{G}_i|}$$

- $\lambda_i = 0.01 \lambda_{\min} \sqrt{|\mathcal{G}_i|}$

where

 $\lambda_{\min} = \min\{\lambda \ge 0: \text{ the solution with } \lambda_i = \lambda \sqrt{|\mathcal{G}_i|} \text{ is } x = 0\}$

• 4 different settings for the number of groups:

number of groups $\in \{\lfloor 0.25n \rfloor, \lfloor 0.50n \rfloor, \lfloor 0.75n \rfloor, n\},\$

- Total of 200 problem instances are tested
- Compare our algorithm FaRSA-Group([1]) vs. gglasso([2])
- Max allowed time: 1000 seconds.

Numerical results

Figure: Performance profile of CPU time (seconds) on problem instances for which at least one algorithm takes at least 1 second.

• the height of the bar given by

$$-\log_2\left(\frac{\text{time required by FaRSA-Group}}{\text{time required by gglasso}}\right)$$
(1)

Lehigh University)	FaRSA-Group	11/12/2020 13/1

- New framework for optimization problems with group-sparse regularization.
 - scalable: reduced-space subproblems
 - fast, efficient: reduced-space Newton-CG computation
- Global convergence with worst-case complexity result.
- Fast local convergence.
- State-of-the-art performance.

- [1] F. E. CURTIS, Y. DAI, AND D. P. ROBINSON, A subspace acceleration method for minimization involving a group sparsity-inducing regularizer, 2020.
- [2] Y. YANG AND H. ZOU, A fast unified algorithm for solving group-lasso penalize learning problems, Statistics and Computing, 25 (2015), pp. 1129–1141.

Newton-CG direction

One of the model

$$m_k(d) := g_k^T d + \frac{1}{2} d^T H_k d$$

2 Compute the reference direction (an approximate minimizer of m_k) as

Q&A

$$d_k^R \leftarrow -\beta_k g_k$$
, where $\beta_k \leftarrow ||g_k||_2^2 / (g_k^T H_k g_k)$

◎ Choose $\mu_k \in (0, 1]$ and then compute any $\overline{d}_k \approx \underset{d}{\operatorname{argmin}} m_k(d)$ that satisfies

$$egin{aligned} g_k^T ar{d}_k &\leq g_k^T d_k^R \ m_k(ar{d}_k) &\leq m_k(0) \ ext{ and } \ \|H_k ar{d}_k + g_k\|_2 &\leq \mu_k \|g_k\|_2^q \end{aligned}$$

$$\mathcal{I}_k^{\mathrm{cg}}$$
 and $\mathcal{I}_k^{\mathrm{pg}}$

How to choose?

Calculate a candidate set

$$\bar{\mathcal{I}}_k^{\text{cg}} := \{ j \in \mathcal{G}_i : [x_k]_{\mathcal{G}_i} \neq 0, \ [x_k + s_k]_{\mathcal{G}_i} \neq 0, \text{ and} \\ \| [x_k]_{\mathcal{G}_i} \|_2 \ge \kappa_1 \| \nabla_{\mathcal{G}_i} (f+r)(x_k) \|_2 \}$$

Q&A

for some $\kappa_1 \in (0, \infty)$.

Secondary screening

 $\mathcal{I}_k^{\text{small}} := \{ j \in \mathcal{G}_i : \mathcal{G}_i \subseteq \bar{\mathcal{I}}_k^{\text{cg}} \text{ and } \| [x_k]_{\mathcal{G}_i} \|_2 < \kappa_2 \| \nabla_{\bar{\mathcal{I}}_k^{\text{cg}}} (f+r)(x_k) \|_2^p \}$ (3)

for some $\{\kappa_2, p\} \subset (0, \infty)$

Inalize

$$\begin{aligned}
\mathcal{I}_{k}^{\mathrm{cg}} &:= \bar{\mathcal{I}}_{k}^{\mathrm{cg}} \setminus \mathcal{I}_{k}^{\mathrm{small}} \\
\mathcal{I}_{k}^{\mathrm{pg}} &:= \{1, 2, \dots, n\} \setminus \mathcal{I}_{k}^{\mathrm{cg}}
\end{aligned} \tag{4}$$

(2)