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Problem

Problem of Interest

Sparse optimization problem

min
x∈Rn

f(x) + r(x)

f : loss function; L-smooth:

- logistic regression; f(x) = 1
N

∑N
i=1 log(1 + e−yix

T di )

- Huber loss function; f(x) =

{
1

2µ
‖x‖2, ‖x‖ ≤ µ

‖x‖ − µ
2
, ‖x‖ > µ

- tanh activation function; f(x) = ex−e−x
ex+e−x

.

r: group sparsity inducing regularizer; convex and nonsmooth:

- group `1: r(x) =
∑
i∈nG λi‖[x]gi‖2

(
λi > 0 for all i ∈ nG and

⋃
i∈nG gi = [n]

)
- Example: for x ∈ R3

non-overlapping g1 = {1, 2} and g2 = {3} : r(x) = λ1

∥∥∥∥(x1

x2

)∥∥∥∥+ λ2‖x3‖.

overlapping g1 = {1, 2} and g2 = {2, 3} : r(x) = λ1

∥∥∥∥(x1

x2

)∥∥∥∥+ λ2

∥∥∥∥(x2

x3

)∥∥∥∥ .
problems arise in signal processing and machine learning applications

- jointly select genes that regulate hormone levels

sparsity in group structure imposes more optimization challenges
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Problem

Brief Literature Review

First Order Methods
(Accelerated) Proximal Gradient Method: ISTA/FISTA
[Donoho, 1995, Beck and Teboulle, 2009]

xk+1 ← arg min
x∈Rn

{
1

2αk
‖x−

(
xk − αk∇f(xk)

)
‖22 + r(x)

}
Second Order Methods

Proximal Newton Method [Lee et al., 2014]

xk+1 ← arg min
x∈Rn

{
1

2αk
‖x−

(
xk − αkH−1

k ∇f(xk)
)
‖2Hk + r(x)

}
Other Methods

Stochastic Settings: SAGA[Defazio et al., 2014] and
ProxSVRG[Xiao and Zhang, 2014]

xk+1 ← arg min
x∈Rn

{
1

2αk
‖x−

(
xk − αkdk

)
‖22 + r(x)

}
with dk being some form of stochastic gradient estimator for ∇f(xk).

(Lehigh University) IPG with Support I.D. October 16, 2022 5 / 30



Problem

Challenges

Algorithm Proximal Gradient Method - Skeleton

1: Initialization: pick x0 ∈ int(dom(f)).
2: while not converged do
3: ...
4: Choose some αk > 0;

5: Compute xk+ 1
2

= arg minx∈Rn
{

1
2αk
‖x−

(
xk − αk∇f(xk)

)
‖22 + r(x)

}
;

6: ...
7: end while

However, all aforementioned methods require the exact solve of the sub-problem.
What if we cannot solve the sub-problem exactly?

1: This is too hard and I give up.

2: Solve the sub-problem as accurate as possible and hope for the good.

3: OR ...
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Inexact Proximal Gradient Method

Inexact Proximal Gradient

Algorithm Inexact Proximal Gradient Method - Skeleton

1: Initialization: pick x0 ∈ int(dom(f)).
2: while not converged do
3: ...
4: Choose some αk > 0;

5: Compute x̂k+1 ≈ arg minx∈Rn
{
φp(x) := 1

2αk
‖x−

(
xk − αk∇f(xk)

)
‖22 + r(x)

}
;

6: ...
7: Get the next iterate xk+1;
8: end while

Define εk accurate solution x̂k+1 as φp(x̂k+1) − φ∗p ≤ εk for any k ≥ 1

Option 1: εk = γ1 ‖x̂k+1 − xk‖2 (ours)

Option 2: εk = γ2

(
φ(xk)− φ∗p

)
([Lee and Wright, 2019])

Option 3: εk = O
(
1/kδ

)
with δ > 2 ([Schmidt et al., 2011])

Wait.... how could it be practical as one needs to know φ∗p!
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Inexact Proximal Gradient Method

Inexact Proximal Gradient: Test the termination conditions

min
x∈Rn

φp(x) := 1
2αk
‖x−

(
xk − αk∇f(xk)

)
‖22 + r(x)

max
y∈Y

φd(y) for some Y and φd

Design a primal-dual type sub-problem solver. For the any primal-dual solution pair
(x̂k+1, ŷk+1), and define the duality gap

Gapk := φp(x̂k+1)− φd(ŷk+1)

Since φp(x̂k+1)− φ∗k ≤ Gapk, then

Gapk ≤ γ1 ‖x̂k+1 − xk‖2 implies Option 1

Gapk ≤ γ2(φp(xk)− φd(ŷk+1)) implies Option 2

Gapk ≤ O
(
1/kδ

)
implies Option 3

For Option 2, [Lee and Wright, 2019] points out that for any solver (e.g.
SpaRSA [Wright et al., 2009]) that has ρ-linear rate convergence for solving the
sub-problem, suffice it to run O(γ2/ log ρ) number of iterations and then just
terminate.
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Inexact Proximal Gradient Method

Global convergence

Assumptions:

f is a C1 function with ∇f Lipschitz continuous; proper, and closed;

r are convex, proper, and closed

f + r is bounded below

Theorem 1 (worst-case complexity, informal)

For ε ∈ (0,∞), the maximum number of iterations required before xk becomes the
ε-approximate stationary point is O

(
ε−2
)
.

Remark: This is the same complexity as if the sub-problem is solved exactly.
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Support Identification

Preliminaries

support identification

The support of a point x ∈ Rn is defined as

S(x) = {i ∈ {1, . . . , nG} | [x]gi 6= 0}.

We say that support identification happens at point x ∈ Rn for a solution x∗ ∈ Rn to
the problem if S(x) = S(x∗).

Figure: Support identification. The solution x∗ ∈ R5 with group structures g1 = {1, 2, 3} and
g2 = {4, 5}. Support identification happens at the x for the left figure while not for the right
one.
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Support Identification

Why we care about the support identificaiton?

Terminate the algorithm before finding the solution (variable selection problems)

Design high-order methods (subspace acceleration)
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Support Identification

Challenge

Assume x̂k+1 and x∗k+1 are the inexact solution and exact solution to the
sub-problem and S(x∗k+1) = S(x∗).

Regardless of how accurately the sub-problem
is being approximately solved,
it is not guaranteed that S(x̂k+1) = S(x∗k+1)!

A sub-solver that exploits the geometric property of the r(x) is required.
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Support Identification

Case Study: Overlapping-Group `1 regularizer

Formulation:

r(x) =
∑
i∈nG

λi‖[x]gi‖2 with λi > 0 for all i ∈ nG and
⋃
i∈nG

gi = [n] (1)

where [x]gi is a sub-vector of x whose coordinates are in the group gi.

Example:
g1 = {1, 2, 3}, g2 = {3, 4, 5}, g3 = {1, 3, 5}.
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Support Identification

Primal-Dual Problem Pair for the proximal subproblem

To avoid the cluttered notations, we introduce uk := xk − αk∇f(xk), then the
sub-problem and its dual problem can be written as

min
x∈Rn

{
φp(x;xk, αk) :=

1

2αk
‖x− uk‖2 +

nG∑
i=1

[λ]i‖[x]gi‖

}
↓

minx,z
1

2αk
‖x− uk‖2 + λT z

s.t.

[
[x]gi
[z]i

]
∈ Ki :=

{[
v

θ

]
| v ∈ R|gi|, θ ∈ R, and ‖v‖ ≤ θ

}
for all i ∈ [nG ]
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Support Identification

Primal-Dual Problem Pair for the Proximal Subproblem: Cont’

Primal-Dual Problem Pair

min
x∈Rn

{
φp(x;xk, αk) :=

1

2αk
‖x− uk‖2 +

nG∑
i=1

[λ]i‖[x]gi‖

}
(2)

max
ŷ∈Fd

{
φd(ŷ;xk, αk) := −αk

2
‖Aŷ‖2 − uTkAŷ

}
, (3)

1 M is a set value mapping that relates [x]gi to [ŷ]M(i);

2 Fd := {ŷ ∈ R
∑nG
i=1 |gi| | ‖[ŷ]M(i)‖ ≤ [λ]i for each i ∈ [nG ]}

3 A is a sparse, full column-rank, and flat matrix.
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Support Identification

Primal-Dual Problem Pair for the Proximal Subproblem: Cont’

Primal-Dual Problem Pair

min
x∈Rn

{
φp(x;xk, αk) :=

1

2αk
‖x− uk‖2 +

nG∑
i=1

[λ]i‖[x]gi‖

}
max
ŷ∈Fd

{
φd(ŷ;xk, αk) := −αk

2
‖Aŷ‖2 − uTkAŷ

}
,

Example 2

Consider the group structure for problem (1) given by

g1 = {1, 2, 3}, g2 = {2, 3, 4}, and g3 = {1, 3, 5}.

Aŷ =


1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1





y1

y2

y3

y4

y5

y6

y7

y8

y9


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Support Identification

Solve the Primal-Dual Subproblem

Primal-Dual Problem Pair

x∗k = arg min
x∈Rn

{
φp(x;xk, αk) :=

1

2αk
‖x− uk‖2 +

nG∑
i=1

[λ]i‖[x]gi‖

}
(4)

Ŷ(xk, αk) = Arg max
ŷ∈Fd

{
φd(ŷ;xk, αk) := −αk

2
‖Aŷ‖2 − uTkAŷ

}
, (5)

Lemma 3 (linking equation)

The unique solution x∗k satisfies x∗k = uk + αkAŷ
∗
k for all ŷ∗k ∈ Ŷ(xk, αk).

Lemma 4

Let i ∈ [nG ]. If there exists ŷ∗k ∈ Ŷ(xk, αk) satisfying
∥∥[ŷ∗k]M(i)

∥∥ < [λ]i, then
[x∗k]gi = 0.
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Support Identification

Primal-Dual Subproblem Solver: graphical demo

Enhanced Projected Gradient Dual Gradient Ascent
Given the tth iterate ŷk,t:

1 Get ŷk,t+1 ← PGA(ŷk,t+1).
2 Construct a trail primal iterate xk,t+1 ← uk + αkAŷk,t+1.
3 Project [xk,t+1]gi to 0 based on if ‖[ŷk,t+1]gi‖ < λi − εk−1 for all i ∈ [nG ].

[ŷk,t]M(i)

[ŷk,t+1]M(i)
[ŷk,t]M(i)[ŷk,t+1]M(i)

[xk,t+1]gi
[xk,t+1]gi

[x̂k,t+1]gi

boundary interior

dual

primal

λi
λi

(Lehigh University) IPG with Support I.D. October 16, 2022 20 / 30



Support Identification

Support Identification Complexity

Assumption 3.1

(non-degeneracy) The quantity

δnd :=

{
minŷ∈Ŷ(x∗,α∗),i 6∈S(x∗)

(
[λ]i − ‖[ŷ]M(i)‖

)
if S(x∗) $ [nG ],

1 if S(x∗) = [nG ],

satisfies δnd > 0. It follows that δ∗ := min{1, δnd} ∈ (0, 1].

f is µf strongly convex and Lg smooth.

Define Θ :=

{
min{1,mini∈S(x∗) ‖[x∗]gi‖} if S(x∗) 6= ∅,
1 otherwise.

θ := (1− µf/Lg) ∈ [η, 1)

Theorem 5 (Support identification complexity)

For some ω ∈ (0, 1), the sequence {εk} satisfies εk+1 ≤ ω2εk. Then, under the
Assumption 3.1 S(xk+1) = S(x∗) for all k ≥ K with

K :=


max

(
O
(

log Θ
log θ

)
,O
(

log δ∗

log(max{ωρmin ,θρ
∗
,ω2ι})

))
if ω < θ,

max

(
O
(

log Θ
logω

)
,O
(

log δ∗

log
(
max{ωmin{ρmin,ρ

∗},ω2ι}
)
))

if ω > θ,

max (O(CΘ),O(Cδ∗ )) if ω = θ.
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Numerical Results

Setup

Logistic loss with overlapping group `1 regularizer

f(x) = 1
N

N∑
i=1

log
(

1 + e−yix
T di
)
.

132 problem instances created based 11 datasets from LIBSVM

Compare Option 1, Option 2, and Option 3 in terms of the solution sparsity,
solution quality, running time

Option 1: εk = γ1 ‖x̂k+1 − xk‖2
Option 2: εk = γ2

(
φ(xk)− φ∗p

)
Option 3: εk = O

(
1/kδ

)
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Numerical Results

Sensitivity to parameters

0.1 0.2 0.3 0.4 0.5

γ1

3000

4000

5000

6000

7000

8000
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ti
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e
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n
se

co
n

d
s)

option I

0.1 0.2 0.3 0.4 0.5

γ2

option II

100 101 102 103 104

const

option III
Total time spent on test instances with varing parameters

Figure: Compare the performance in CPU time for three options with different algorithm
parameters. γ1 for Option 1 and γ2 for Option 2 are both selected from {0.1,0.2,0.3,0.4,0.5}
and const for Option 3 is selected from {10i}4i=0.
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Numerical Results

Time comparison

approximate maximum maximum numerical
solution found iteration limit time limit difficulties

Option 1 108 16 7 1
Option 2 107 15 8 2
Option 3 107 16 9 0

Table: Termination status summary for the three algorithm variants Option 1, Option 2, and
Option 3 on the 132 test instances with our subproblem solver.
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Figure: A performance profile for CPU time (seconds). In each plot, we exclude problem
instances for which both algorithms fail.

height of the bar = − ln

(
metric of one algorithm

metric of another algorithm

)
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Numerical Results

Enhanced Projected Gradient Ascent v.s. Vanilla Projected Gradient
Ascent

IPG+EPGA IPG+PGA
data set Λ #z #nz F #z #nz F

a9a 0.013458 12 2 0.508337 0 14 0.508337
colon-cancer 0.017751 213 10 0.336270 1 222 0.336270

duke breast-cancer 0.016198 779 13 0.246910 2 790 0.246910
gisette 0.012003 536 20 0.402671 2 554 0.402671

leukemia 0.020514 781 11 0.258627 0 792 0.258627
madelon 0.000402 19 37 0.666079 0 56 0.666112

mushrooms 0.009528 10 3 0.316138 0 13 0.316138
w8a 0.006687 24 10 0.429029 0 34 0.429029

Table: The test results for IPG using EPGA or PGA algorithm as the subproblem solvers.
Columns “#z”, “#nz”, and “F” give the number of zero groups, the number of non-zero
groups, and the final objective value, respectively.
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Numerical Results

Summary

Discussed two adaptive and implementable termination conditions for the
inexact proximal gradient method (IPG) and provided unified convergence
analysis.

Crafted a specialized proximal subproblem solver to enable the support
identification property of the IPG method when using the overlapping group `1
regularizer.

Derived the support identification complexity for IPG method when using the
overlapping group `1 regularizer.
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Numerical Results

Q&A

Thank you and Questions?

Contact: yud319@lehigh.edu
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