## Inexact Proximal Gradient Method with Optimal Support Identification

Yutong Dai<sup>1</sup> Daniel P. Robinson<sup>1</sup>

<sup>1</sup>Industrial and Systems Engineering, Lehigh University

INFORMS Annual Meeting 2022

October 16, 2022

### Outline



2 Inexact Proximal Gradient Method

Support Identification



## Outline



2 Inexact Proximal Gradient Method

3 Support Identification



### Problem of Interest

#### Sparse optimization problem

$$\min_{x \in \mathbb{R}^n} \quad f(x) + r(x)$$

• *f*: loss function; *L*-smooth:

- logistic regression; 
$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i x^T d_i})$$

- Huber loss function;  $f(x) = \begin{cases} \frac{1}{2\mu} ||x||^2, & ||x|| \le \mu \\ ||x|| \frac{\mu}{2}, & ||x|| > \mu \end{cases}$
- tanh activation function;  $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ .
- r: group sparsity inducing regularizer; convex and nonsmooth:
  - group  $\ell_1$ :  $r(x) = \sum_{i \in n_{\mathcal{G}}} \lambda_i ||[x]_{g_i}||_2 \ \left(\lambda_i > 0 \text{ for all } i \in n_{\mathcal{G}} \text{ and } \bigcup_{i \in n_{\mathcal{G}}} g_i = [n]\right)$
  - Example: for  $x \in \mathbb{R}^3$

non-overlapping 
$$g_1 = \{1, 2\}$$
 and  $g_2 = \{3\} : r(x) = \lambda_1 \left\| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\| + \lambda_2 \|x_3\|$ .  
overlapping  $g_1 = \{1, 2\}$  and  $g_2 = \{2, 3\} : r(x) = \lambda_1 \left\| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\| + \lambda_2 \left\| \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} \right\|$ .

- problems arise in signal processing and machine learning applications
  - jointly select genes that regulate hormone levels
- sparsity in group structure imposes more optimization challenges

(Lehigh University)

IPG with Support I.D.

October 16, 2022 4/30

### Brief Literature Review

#### • First Order Methods

• (Accelerated) Proximal Gradient Method: ISTA/FISTA [Donoho, 1995, Beck and Teboulle, 2009]

$$x_{k+1} \leftarrow \arg\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \| x - (x_k - \alpha_k \nabla f(x_k)) \|_2^2 + r(x) \right\}$$

#### • Second Order Methods

• Proximal Newton Method [Lee et al., 2014]

$$x_{k+1} \leftarrow \arg\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \| x - \left( x_k - \alpha_k H_k^{-1} \nabla f(x_k) \right) \|_{H_k}^2 + r(x) \right\}$$

#### • Other Methods

• Stochastic Settings: SAGA[Defazio et al., 2014] and ProxSVRG[Xiao and Zhang, 2014]

$$x_{k+1} \leftarrow \arg\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k d_k)\|_2^2 + r(x) \right\}$$

with  $d_k$  being some form of stochastic gradient estimator for  $\nabla f(x_k)$ .

### Challenges

### Algorithm Proximal Gradient Method - Skeleton

1: Initialization: pick  $x_0 \in int(dom(f))$ . 2: while not converged do 3: ... 4: Choose some  $\alpha_k > 0$ ; 5: Compute  $x_{k+\frac{1}{2}} = \arg\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k \nabla f(x_k))\|_2^2 + r(x) \right\}$ ; 6: ... 7: end while

However, all aforementioned methods require the exact solve of the sub-problem. What if we cannot solve the sub-problem exactly?

- 1: This is too hard and I give up.
- 2: Solve the sub-problem as accurate as possible and hope for the good.

3: OR ...

### Outline









Inexact Proximal Gradient Method

### Inexact Proximal Gradient

Algorithm Inexact Proximal Gradient Method - Skeleton

```
1: Initialization: pick x_0 \in int(dom(f)).

2: while not converged do

3: ...

4: Choose some \alpha_k > 0;

5: Compute \hat{x}_{k+1} \approx \arg\min_{x \in \mathbb{R}^n} \left\{ \phi_p(x) := \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k \nabla f(x_k))\|_2^2 + r(x) \right\};

6: ...

7: Get the next iterate x_{k+1};
```

8: end while

Define  $\epsilon_k$  accurate solution  $\hat{x}_{k+1}$  as  $\phi_p(\hat{x}_{k+1}) - \phi_p^* \leq \epsilon_k$  for any  $k \geq 1$ 

- Option\_1:  $\epsilon_k = \gamma_1 \|\hat{x}_{k+1} x_k\|^2$  (ours)
- Option\_2:  $\epsilon_k = \gamma_2 \left( \phi(x_k) \phi_p^* \right)$  ([Lee and Wright, 2019])
- Option\_3:  $\epsilon_k = \mathcal{O}\left(1/k^{\delta}\right)$  with  $\delta > 2$  ([Schmidt et al., 2011])

Wait.... how could it be practical as one needs to know  $\phi_p^*$ !

### Inexact Proximal Gradient: Test the termination conditions

$$\min_{x \in \mathbb{R}^n} \phi_p(x) := \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k \nabla f(x_k))\|_2^2 + r(x)$$
$$\max_{y \in \mathcal{Y}} \phi_d(y) \text{ for some } \mathcal{Y} \text{ and } \phi_d$$

Design a primal-dual type sub-problem solver. For the any primal-dual solution pair  $(\hat{x}_{k+1}, \hat{y}_{k+1})$ , and define the duality gap

$$\operatorname{Gap}_k := \phi_p(\hat{x}_{k+1}) - \phi_d(\hat{y}_{k+1})$$

Since  $\phi_p(\hat{x}_{k+1}) - \phi_k^* \leq \operatorname{Gap}_k$ , then

- $\operatorname{Gap}_k \leq \gamma_1 \, \|\hat{x}_{k+1} x_k\|^2$  implies Option\_1
- $\operatorname{Gap}_k \leq \gamma_2(\phi_p(x_k) \phi_d(\hat{y}_{k+1}))$  implies Option\_2
- $\operatorname{Gap}_k \leq \mathcal{O}\left(1/k^{\delta}\right)$  implies Option\_3

For Option\_2, [Lee and Wright, 2019] points out that for any solver (e.g. SpaRSA [Wright et al., 2009]) that has  $\rho$ -linear rate convergence for solving the sub-problem, suffice it to run  $\mathcal{O}(\gamma_2/\log \rho)$  number of iterations and then just terminate.

### Global convergence

Assumptions:

- f is a  $C^1$  function with  $\nabla f$  Lipschitz continuous; proper, and closed;
- $\bullet~r$  are convex, proper, and closed
- f + r is bounded below

### Theorem 1 (worst-case complexity, informal)

For  $\epsilon \in (0, \infty)$ , the maximum number of iterations required before  $x_k$  becomes the  $\epsilon$ -approximate stationary point is  $\mathcal{O}(\epsilon^{-2})$ .

**Remark:** This is the same complexity as if the sub-problem is solved exactly.

## Outline

D Problem

2 Inexact Proximal Gradient Method

### 3 Support Identification



### Preliminaries

#### support identification

The support of a point  $x \in \mathbb{R}^n$  is defined as

$$S(x) = \{i \in \{1, \dots, n_{\mathcal{G}}\} \mid [x]_{g_i} \neq 0\}.$$

We say that support identification happens at point  $x \in \mathbb{R}^n$  for a solution  $x^* \in \mathbb{R}^n$  to the problem if  $S(x) = S(x^*)$ .



Figure: Support identification. The solution  $x^* \in \mathbb{R}^5$  with group structures  $g_1 = \{1, 2, 3\}$  and  $g_2 = \{4, 5\}$ . Support identification happens at the x for the left figure while not for the right one.

Why we care about the support identification?

- Terminate the algorithm before finding the solution (variable selection problems)
- Design high-order methods (subspace acceleration)

### Challenge

Assume  $\hat{x}_{k+1}$  and  $x_{k+1}^*$  are the inexact solution and exact solution to the sub-problem and  $S(x_{k+1}^*) = S(x^*)$ .

Regardless of how accurately the sub-problem is being approximately solved, it is not guaranteed that  $S(\hat{x}_{k+1}) = S(x_{k+1}^*)!$ 



A sub-solver that exploits the geometric property of the r(x) is required.

Case Study: Overlapping-Group  $\ell_1$  regularizer

• Formulation:

$$r(x) = \sum_{i \in n_{\mathcal{G}}} \lambda_i ||[x]_{g_i}||_2 \text{ with } \lambda_i > 0 \text{ for all } i \in n_{\mathcal{G}} \text{ and } \bigcup_{i \in n_{\mathcal{G}}} g_i = [n]$$
(1)

where  $[x]_{g_i}$  is a sub-vector of x whose coordinates are in the group  $g_i$ . • Example:

$$g_1 = \{1, 2, 3\}, g_2 = \{3, 4, 5\}, g_3 = \{1, 3, 5\}.$$

Primal-Dual Problem Pair for the proximal subproblem

To avoid the cluttered notations, we introduce  $u_k := x_k - \alpha_k \nabla f(x_k)$ , then the sub-problem and its dual problem can be written as

$$\min_{x \in \mathbb{R}^{n}} \left\{ \phi_{p}(x; x_{k}, \alpha_{k}) \coloneqq \frac{1}{2\alpha_{k}} \|x - u_{k}\|^{2} + \sum_{i=1}^{n_{\mathcal{G}}} [\lambda]_{i} \|[x]_{g_{i}}\| \right\} \\
\downarrow \\
\left\{ \begin{array}{c} \min_{x, z} \ \frac{1}{2\alpha_{k}} \|x - u_{k}\|^{2} + \lambda^{T} z \\
\text{s.t.} \quad \begin{bmatrix} [x]_{g_{i}} \\
[z]_{i} \end{bmatrix} \in \mathcal{K}_{i} \coloneqq \left\{ \begin{bmatrix} v \\ \theta \end{bmatrix} \mid v \in \mathbb{R}^{|g_{i}|}, \theta \in \mathbb{R}, \text{ and } \|v\| \leq \theta \right\} \text{ for all } i \in [n_{\mathcal{G}}]
\end{array} \right.$$

Primal-Dual Problem Pair for the Proximal Subproblem: Cont'

#### Primal-Dual Problem Pair

$$\min_{x \in \mathbb{R}^{n}} \left\{ \phi_{p}(x; x_{k}, \alpha_{k}) := \frac{1}{2\alpha_{k}} \|x - u_{k}\|^{2} + \sum_{i=1}^{n_{\mathcal{G}}} [\lambda]_{i} \|[x]_{g_{i}}\| \right\}$$

$$\max_{\hat{y} \in \mathcal{F}_{d}} \left\{ \phi_{d}(\hat{y}; x_{k}, \alpha_{k}) := -\frac{\alpha_{k}}{2} \|A\hat{y}\|^{2} - u_{k}^{T} A\hat{y} \right\},$$
(2)
(3)

M is a set value mapping that relates [x]<sub>gi</sub> to [ŷ]<sub>M(i)</sub>;
F<sub>d</sub> := {ŷ ∈ ℝ<sup>∑<sub>i=1</sub><sup>ng</sup>|g<sub>i</sub>|</sup> | ||[ŷ]<sub>M(i)</sub>|| ≤ [λ]<sub>i</sub> for each i ∈ [ng]}

**\bigcirc** A is a sparse, full column-rank, and flat matrix.

### Primal-Dual Problem Pair for the Proximal Subproblem: Cont'

#### Primal-Dual Problem Pair

$$\begin{split} \min_{x \in \mathbb{R}^n} \left\{ \phi_p(x; x_k, \alpha_k) &:= \frac{1}{2\alpha_k} \|x - u_k\|^2 + \sum_{i=1}^{n_{\mathcal{G}}} [\lambda]_i \| [x]_{g_i} \| \right\} \\ \max_{\hat{y} \in \mathcal{F}_d} \left\{ \phi_d(\hat{y}; x_k, \alpha_k) &:= -\frac{\alpha_k}{2} \|A\hat{y}\|^2 - u_k^T A\hat{y} \right\}, \end{split}$$

#### Example 2

Consider the group structure for problem (1) given by

$$g_1 = \{1, 2, 3\}, g_2 = \{2, 3, 4\}, \text{ and } g_3 = \{1, 3, 5\}.$$

### Solve the Primal-Dual Subproblem

#### Primal-Dual Problem Pair

$$x_{k}^{*} = \arg\min_{x \in \mathbb{R}^{n}} \left\{ \phi_{p}(x; x_{k}, \alpha_{k}) := \frac{1}{2\alpha_{k}} \|x - u_{k}\|^{2} + \sum_{i=1}^{n_{g}} [\lambda]_{i} \|[x]_{g_{i}}\| \right\}$$
(4)  
$$\hat{\mathcal{Y}}(x_{k}, \alpha_{k}) = \arg\max_{\hat{y} \in \mathcal{F}_{d}} \left\{ \phi_{d}(\hat{y}; x_{k}, \alpha_{k}) := -\frac{\alpha_{k}}{2} \|A\hat{y}\|^{2} - u_{k}^{T} A\hat{y} \right\},$$
(5)

#### Lemma 3 (linking equation)

The unique solution  $x_k^*$  satisfies  $x_k^* = u_k + \alpha_k A \hat{y}_k^*$  for all  $\hat{y}_k^* \in \hat{\mathcal{Y}}(x_k, \alpha_k)$ .

#### Lemma 4

Let  $i \in [n_{\mathcal{G}}]$ . If there exists  $\hat{y}_k^* \in \hat{\mathcal{Y}}(x_k, \alpha_k)$  satisfying  $\|[\hat{y}_k^*]_{\mathcal{M}(i)}\| < [\lambda]_i$ , then  $[x_k^*]_{g_i} = 0$ .

### Primal-Dual Subproblem Solver: graphical demo

Enhanced Projected Gradient Dual Gradient Ascent Given the *t*th iterate  $\hat{y}_{k,t}$ :

- Get  $\hat{y}_{k,t+1} \leftarrow \mathsf{PGA}(\hat{y}_{k,t+1})$ .
- **2** Construct a trail primal iterate  $x_{k,t+1} \leftarrow u_k + \alpha_k A \hat{y}_{k,t+1}$ .
- Project  $[x_{k,t+1}]_{g_i}$  to 0 based on if  $\|[\hat{y}_{k,t+1}]_{g_i}\| < \lambda_i \epsilon_{k-1}$  for all  $i \in [n_{\mathcal{G}}]$ .



(Lehigh University)

IPG with Support I.D.

### Support Identification Complexity

#### Assumption 3.1

• (non-degeneracy) The quantity

$$\delta_{\mathrm{nd}} := \begin{cases} \min_{\hat{y} \in \hat{\mathcal{Y}}(x^*, \alpha^*), i \notin \mathcal{S}(x^*)} \left( [\lambda]_i - \| [\hat{y}]_{\mathcal{M}(i)} \| \right) & \text{if } \mathcal{S}(x^*) \subsetneqq [n_{\mathcal{G}}], \\ 1 & \text{if } \mathcal{S}(x^*) = [n_{\mathcal{G}}], \end{cases}$$

satisfies  $\delta_{nd} > 0$ . It follows that  $\delta^* := \min\{1, \delta_{nd}\} \in (0, 1]$ .

• f is  $\mu_f$  strongly convex and  $L_g$  smooth.

Define 
$$\Theta := \begin{cases} \min\{1, \min_{i \in \mathcal{S}(x^*)} \| [x^*]_{g_i} \| \} & \text{if } \mathcal{S}(x^*) \neq \emptyset, \\ 1 & \text{otherwise.} \end{cases}$$
  $\theta := (1 - \mu_f / L_g) \in [\eta, 1)$ 

#### Theorem 5 (Support identification complexity)

For some  $\omega \in (0,1)$ , the sequence  $\{\epsilon_k\}$  satisfies  $\epsilon_{k+1} \leq \omega^2 \epsilon_k$ . Then, under the Assumption 3.1  $S(x_{k+1}) = S(x^*)$  for all  $k \geq K$  with

$$K := \begin{cases} \max\left(\mathcal{O}\left(\frac{\log\Theta}{\log\theta}\right), \mathcal{O}\left(\frac{\log\delta^*}{\log(\omega)}, \theta^{\rho^*}, \omega^{2\iota}\right)\right) & \text{if } \omega < \theta, \\ \max\left(\mathcal{O}\left(\frac{\log\Theta}{\log\omega}\right), \mathcal{O}\left(\frac{\log\delta^*}{\log(\max\{\omega^{\min\{\rho\min,\rho^*\}}, \omega^{2\iota}\}\right)}\right) & \text{if } \omega > \theta, \\ \max\left(\mathcal{O}(C_{\Theta}), \mathcal{O}(C_{\delta^*})\right) & \text{if } \omega = \theta. \end{cases}$$

(Lehigh University)

IPG with Support I.D.

## Outline

D Problem

2 Inexact Proximal Gradient Method

3 Support Identification



• Logistic loss with overlapping group  $\ell_1$  regularizer

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \log \left( 1 + e^{-y_i x^T d_i} \right).$$

- 132 problem instances created based 11 datasets from LIBSVM
- Compare Option\_1, Option\_2, and Option\_3 in terms of the solution sparsity, solution quality, running time
  - Option\_1:  $\epsilon_k = \gamma_1 \, \| \hat{x}_{k+1} x_k \|^2$
  - Option\_2:  $\epsilon_k = \gamma_2 \left( \phi(x_k) \phi_p^* \right)$
  - Option\_3:  $\epsilon_k = \mathcal{O}\left(1/k^{\delta}
    ight)$

### Sensitivity to parameters



Figure: Compare the performance in CPU time for three options with different algorithm parameters.  $\gamma_1$  for Option\_1 and  $\gamma_2$  for Option\_2 are both selected from  $\{0.1, 0.2, 0.3, 0.4, 0.5\}$  and const for Option\_3 is selected from  $\{10^i\}_{i=0}^4$ .

### Time comparison

|                     | approximate    | maximum         | maximum    | numerical    |
|---------------------|----------------|-----------------|------------|--------------|
|                     | solution found | iteration limit | time limit | difficulties |
| $Option_1$          | 108            | 16              | 7          | 1            |
| Option_2            | 107            | 15              | 8          | 2            |
| $\texttt{Option}_3$ | 107            | 16              | 9          | 0            |

Table: Termination status summary for the three algorithm variants Option\_1, Option\_2, and Option\_3 on the 132 test instances with our subproblem solver.



Figure: A performance profile for CPU time (seconds). In each plot, we exclude problem instances for which both algorithms fail.

height of the bar 
$$= -\ln\left(\frac{\text{metric of one algorithm}}{\text{metric of another algorithm}}\right)$$

(Lehigh University)

IPG with Support I.D.

Enhanced Projected Gradient Ascent v.s. Vanilla Projected Gradient Ascent

|                    |           | IPG+EPGA |     | IPG+PGA  |    |     |          |
|--------------------|-----------|----------|-----|----------|----|-----|----------|
| data set           | $\Lambda$ | #z       | #nz | F        | #z | #nz | F        |
| a9a                | 0.013458  | 12       | 2   | 0.508337 | 0  | 14  | 0.508337 |
| colon-cancer       | 0.017751  | 213      | 10  | 0.336270 | 1  | 222 | 0.336270 |
| duke breast-cancer | 0.016198  | 779      | 13  | 0.246910 | 2  | 790 | 0.246910 |
| gisette            | 0.012003  | 536      | 20  | 0.402671 | 2  | 554 | 0.402671 |
| leukemia           | 0.020514  | 781      | 11  | 0.258627 | 0  | 792 | 0.258627 |
| madelon            | 0.000402  | 19       | 37  | 0.666079 | 0  | 56  | 0.666112 |
| mushrooms          | 0.009528  | 10       | 3   | 0.316138 | 0  | 13  | 0.316138 |
| w8a                | 0.006687  | 24       | 10  | 0.429029 | 0  | 34  | 0.429029 |

Table: The test results for IPG using EPGA or PGA algorithm as the subproblem solvers. Columns "#z", "#nz", and "F" give the number of zero groups, the number of non-zero groups, and the final objective value, respectively.

- Discussed two **adaptive** and **implementable** termination conditions for the inexact proximal gradient method (IPG) and provided unified convergence analysis.
- Crafted a specialized proximal subproblem solver to enable the support identification property of the IPG method when using the overlapping group  $\ell_1$  regularizer.
- Derived the support identification complexity for IPG method when using the overlapping group  $\ell_1$  regularizer.

# Thank you and Questions?

Contact: yud319@lehigh.edu

### References I

[Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202.

[Defazio et al., 2014] Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: a fast incremental gradient method with support for non-strongly convex composite objectives.

In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 1, pages 1646–1654.

[Donoho, 1995] Donoho, D. (1995).Denoising by soft-thresholding.Trans. Inform. Theory, 41:613–627.

[Lee and Wright, 2019] Lee, C.-p. and Wright, S. J. (2019). Inexact successive quadratic approximation for regularized optimization. Computational Optimization and Applications, 72(3):641–674.

[Lee et al., 2014] Lee, J. D., Sun, Y., and Saunders, M. A. (2014). Proximal newton-type methods for minimizing composite functions. *SIAM Journal on Optimization*, 24(3):1420–1443. [Schmidt et al., 2011] Schmidt, M., Roux, N. L., and Bach, F. (2011). Convergence rates of inexact proximal-gradient methods for convex optimization.

[Wright et al., 2009] Wright, S. J., Nowak, R. D., and Figueiredo, M. A. (2009). Sparse reconstruction by separable approximation. *IEEE Transactions on Signal Processing*, 57(7):2479–2493.

 [Xiao and Zhang, 2014] Xiao, L. and Zhang, T. (2014).
 A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057–2075.