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Problem

Problem of Interest

Sparse optimization problem

min = (@) tn(e)

e f: loss function; L-smooth:
- logistic regression; f(z) = % vazl log(1 + e*yiszi)

allzll?, el < p
el = &, flall > s

x

- Huber loss function; f(z) = {

et —e”
eTte"T "
e r: group sparsity inducing regularizer; convex and nonsmooth:

- group ¢1: r(z) = ZiE’rLg Ailllx]g; |2 ()\1- >0 for all ¢ € ng and U’iETLg gi = [n})

- Example: for z € R3
T

] B (]

o problems arise in signal processing and machine learning applications
- jointly select genes that regulate hormone levels

- tanh activation function; f(z) =

non-overlapping g1 = {1,2} and g2 = {3} : 7(z) = A1

overlapping g1 ={1,2} and g2 = {2,3} : r(z) = \1

@ sparsity in group structure imposes more optimization challenges
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Problem

Brief Literature Review

o First Order Methods

o (Accelerated) Proximal Gradient Method: ISTA/FISTA
[Donoho, 1995, Beck and Teboulle, 2009]

Tpy1 < a,rgxnel]iRr}l {i”x — (Ik - aka(JCk))“% + T(I)}

o Second Order Methods
o Proximal Newton Method [Lee et al., 2014]

: 1 —1 2
w1 arg min { Ao lle = (o — 'V @) Iy, + (@)}
e Other Methods

o Stochastic Settings: SAGA[Defazio et al., 2014] and
ProxSVRG[Xiao and Zhang, 2014]

Tit1 < arg Lnel]g}L {i\\x — (zx — akdk)Hg + r(x)}

with dj being some form of stochastic gradient estimator for V f(zy).
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Problem

Challenges

Algorithm Proximal Gradient Method - Skeleton

1: Initialization: pick zo € int(dom(f)).
2: while not converged do

3:

4 Choose some ay, > 0;

5: Compute z; , 1 = argmingegn {2% lz — (zx — arV fzx)) |5 + r( )}
6:

7: end while

However, all aforementioned methods require the exact solve of the sub-problem.
What if we cannot solve the sub-problem exactly?

1: This is too hard and I give up.
2: Solve the sub-problem as accurate as possible and hope for the good.
3: OR ...
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Inexact Proximal Gradient Method

Inexact Proximal Gradient

Algorithm Inexact Proximal Gradient Method - Skeleton

1: Initialization: pick zo € int(dom(f)).
2: while not converged do

3:

4 Choose some ay > 0;

5. Compute &1 ~ arg mingegn {ép(ﬂﬂ) = gar = (zk — ar V(@) 13 + T(l’)};
6:

7 Get the next iterate xi41;

8: end while

Define ¢, accurate solution %511 as ¢p(Zx41) — (); < ¢, for any k> 1

o Option 1: e =1 |[&pr1 — zx]° (ours)
® Option.2: e, =72 (¢(zx) — ¢}) ([Lee and Wright, 2019])
@ Option.3: € = O (1/k%) with § > 2 ([Schmidt et al., 2011])

Wait.... how could it be practical as one needs to know ¢,!
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Inexact Proximal Gradient Method

Inexact Proximal Gradient: Test the termination conditions

min ¢,(x) = g o — (2 — axVf(aw) |13 +r(2)

max ¢4 (y) for some Y and ¢q
yey

Design a primal-dual type sub-problem solver. For the any primal-dual solution pair

(Zk+41, Yr+1), and define the duality gap
Gapy, == ¢p(Tr+1) — PalUr+1)

Since ¢p(Zrt1) — ¢ < Gapy, then

o Gap, <71 ||Tk+1 — :Uk||2 implies Option_1
o Gap;, < v2(¢pp(xk) — ¢a(Yr41)) implies Option_2
o Gap, < O (1/K°) implies Option_3

For Option_2, [Lee and Wright, 2019] points out that for any solver (e.g.
SpaRSA [Wright et al., 2009]) that has p-linear rate convergence for solving the
sub-problem, suffice it to run O(v2/log p) number of iterations and then just
terminate.
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Inexact Proximal Gradient Method

Global convergence

Assumptions:
e fisa C' function with Vf Lipschitz continuous; proper, and closed;
e r are convex, proper, and closed
e f 4+ r is bounded below

Theorem 1 (worst-case complexity, informal)

For e € (0,00), the mazimum number of iterations required before xi becomes the
e-approximate stationary point is O (6_2).

Remark: This is the same complexity as if the sub-problem is solved exactly.
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Support Identification

Preliminaries

support identification

The support of a point € R™ is defined as

S(@)={i€{l,...,ng} | [z]; #0}.

We say that support identification happens at point € R™ for a solution z* € R" to
the problem if S(z) = S(z*).

S(x) ={2} S(x)* ={1.2}
S(x")={2} S(x*) ={2}

91 92 91 92

Figure: Support identification. The solution z* € R with group structures g1 = {1,2,3} and
g2 = {4,5}. Support identification happens at the x for the left figure while not for the right
one.
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Support Identification

Why we care about the support identificaiton?

e Terminate the algorithm before finding the solution (variable selection problems)

@ Design high-order methods (subspace acceleration)

(Lehigh University) IPG with Support I.D. October 16, 2022 13 /30



Support Identification

Challenge

Assume 711 and z.; are the inexact solution and exact solution to the
sub-problem and S(z;.,,) = S(z").

Regardless of how accurately the sub-problem
is being approximately solved,
it is not guaranteed that S(ix1) = S(x; )!

|X;;+1]y\

x,\*\
&
6\

A sub-solver that exploits the geometric property of the r(z) is required.
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Support Identification

Case Study: Overlapping-Group ¢; regularizer

e Formulation:

r(z) = Z Ail|[z]g; ]|z with A; > 0 for all ¢ € ng and U gi = [n]

1€Eng i€Eng

where [z],, is a sub-vector of x whose coordinates are in the group g;.

o Example:
g1 =11,2,3},92 = {3,4,5},93 = {1,3,5}.
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Support Identification

Primal-Dual Problem Pair for the proximal subproblem

To avoid the cluttered notations, we introduce uy := xr — axV f(z1), then the
sub-problem and its dual problem can be written as

1 oL
min {abp(m; Ty, o) 1= a1~ ug |+ [Nl II}
=1

zERM
1
ming,, ﬁ”x — uk||2 + 2Tz

s.t. [[T]]g’:| € ;= { |:Z:| | v € RI%I 0 € R, and ||v]| < 9} for all i € [ng]
Zli
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Support Identification

Primal-Dual Problem Pair for the Proximal Subproblem: Cont’

Primal-Dual Problem Pair

TER™

ng
mm{%@wm%%=£wx—ww+§ﬂMMﬂa@

N @ N N
max {ga(: zv. on) 1= — G AGI° —uf A3},

@ M is a set value mapping that relates [z]y, to [§]azi);
© Fui= {5 € B¥5 100 | [glany | < [N): for each i € [ng]}

@ A is a sparse, full column-rank, and flat matrix.
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Support Identification

Primal-Dual Problem Pair for the Proximal Subproblem: Cont’

Primal-Dual Problem Pair

TER™

1 oL
min {¢>p(w; Ty, ag) = EH“T — wl” + Z[Mill[m]giII}
=1

& (677 & &
Imax {d)d(y;mk,ak) = —7I|Ayll2 - UfAy} :

|

Example 2

Consider the group structure for problem (1) given by
g1 =41,2,3}, g2={2,3,4}, and g3 ={1,3,5}.

o
Y2
Y3
Y4
Ys
Y6
yr
Y8

Lyg

%

Il
@@ @ @ =
SO OO
oSO~ OO
[N Nl ]
oo OO
o~ O OO
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O OOO

y
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Support Identification

Solve the Primal-Dual Subproblem

Primal-Dual Problem Pair

* . . . 1 2 <
@ = arg min {%(w,xk,ak) = gl el lezll[m]gill} (4)

A ¢4 A A
Vlwr,ox) = Arg max {gu(@an, ax) := — 5| 43]° — uf A7} (5)

Lemma 3 (linking equation)

The unique solution =} satisfies xj = ug + arAgy for all §; € Y(zx, o).

Let i € [ng]. If there exists 9 € Y(zk, o) satisfying ||[QZ}M(1)|| < [N, then
[zklg: = 0.
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Support Identification

Primal-Dual Subproblem Solver: graphical demo

Enhanced Projected Gradient Dual Gradient Ascent
Given the tth iterate g,
Q Get @k,tJrl — PGA(:ljk7t+1).
@ Construct a trail primal iterate zy ¢4+1 ¢ Uk + A AYk,t41-
@ Project [zk,i4+1]g; to 0 based on if ||[Jk,t41]g: 1] < Ai — €1 for all ¢ € [ng].

i
dual i

\ prima
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Support Identification

Support Identification Complexity

Assumption 3.1

@ (non-degeneracy) The quantity

f - mingej;(xma*)’igs(w*) (P\]z - ||[ZﬂM(z)H) if 3($*) ;Ct [ng],
R b if S(z*) = [ng],

satisfies dnq > 0. It follows that ¢* := min{1, d,q} € (0, 1].

@ fis s strongly convex and Ly smooth.

Define © := {min{l,minies(z*) Iz*]g: I} if S(2%) # 0, 0= (1—pg/Lg) € n,1)

1 otherwise.

Theorem 5 (Support identification complexity)

For some w € (0,1), the sequence {1} satisfies ex11 < w?e. Then, under the
Assumption 8.1 S(zi+1) = S(z*) for all k > K with
log © log 6™ .
max [ O ( loge) ,0 (log(max{wpmin,ef’*,wz"})>> if w <0,
K .= log © log &6* .
e (O (Ing) O log(max{wmi"{pmin'p*},w2L}) dw>0,
max (O(Cg), O(Cs+)) if w=0.
V.
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Numerical Results

Setup

o Logistic loss with overlapping group ¢; regularizer

N
flx)=+ Zlog (1 + efy“”Td") .
i=1

@ 132 problem instances created based 11 datasets from LIBSVM

o Compare Option_1, Option_2; and Option_3 in terms of the solution sparsity,
solution quality, running time

o Option.1: e =1 ||#xp1 — =k
o Option2: e =72 (¢(zk) — ¢5)
o Option 3: ¢ = O (1/k%)
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Numerical Results

Sensitivity to parameters

Total time spent on test instances with varing parameters
option | option Il option Il

Figure: Compare the performance in CPU time for three options with different algorithm
parameters. y1 for Option_1 and 2 for Option 2 are both selected from {0.1,0.2,0.3,0.4,0.5}
and const for Option_3 is selected from {10* ?:0.
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Numerical Results

Time comparison

approximate maximum maximum | numerical

solution found | iteration limit | time limit | difficulties
Option_1 108 16 7 1
Option_2 107 15 8 2
Option_3 107 16 9 0

Table: Termination status summary for the three algorithm variants Option_1, Option_2, and

Option_3 on the 132 test instances with our subproblem solver.

Metric: Computational Time

Metric: Computational Time. Metric: Computational Time.
N BN option ! (area:d41.837) N BN option 2 (area:34.519) N BN option 1 (area:26.874)
M option_3 (area:29.752) W option_3 (area:22.768) W option_2 (area:26.025)
1 1
5 5 5
£ N N
¥ ¥ ¥
-1 -1
-2 -2
) 80 100 0 20 0 0 80 100 0 2 0 ) 80 100

0 20 0

Figure: A performance profile for CPU time (seconds). In each plot, we exclude problem
instances for which both algorithms fail.

n ( metric of one algorithm )

height of the bar =
Clgit of Bhe bat metric of another algorithm
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Numerical Results

Enhanced Projected Gradient Ascent v.s. Vanilla Projected Gradient

Ascent
IPG+EPGA IPG+PGA

data set A #z  F#nz F #z  F#nz F
a9a 0.013458 | 12 2 0.508337 | O 14 0.508337
colon-cancer 0.017751 | 213 10 0.336270 1 222 0.336270
duke breast-cancer 0.016198 | 779 13  0.246910 | 2 790 0.246910
gisette 0.012003 | 536 20  0.402671 | 2 554  0.402671
leukemia 0.020514 | 781 11  0.258627 | O 792  0.258627
madelon 0.000402 | 19 37 0.666079 | O 56 0.666112
mushrooms 0.009528 | 10 3 0.316138 | 0 13 0.316138
w8a 0.006687 | 24 10 0.429029 0 34 0.429029

Table: The test results for IPG using EPGA or PGA algorithm as the subproblem solvers.

Columns “#z”, “#nz”, and “F” give the number of zero groups, the number of non-zero

groups, and the final objective value, respectively.
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Numerical Results

Summary

@ Discussed two adaptive and implementable termination conditions for the
inexact proximal gradient method (IPG) and provided unified convergence
analysis.

o Crafted a specialized proximal subproblem solver to enable the support
identification property of the IPG method when using the overlapping group ¢1
regularizer.

@ Derived the support identification complexity for IPG method when using the
overlapping group ¢; regularizer.
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Numerical Results

Q&A

Thank you and Questions?

Contact:  yud319@lehigh.edu
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Numerical Results
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Numerical Results
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