Inexact Proximal Gradient Method with Optimal Support Identification

Yutong Dai ${ }^{1}$ Daniel P. Robinson ${ }^{1}$
${ }^{1}$ Industrial and Systems Engineering, Lehigh University
INFORMS Annual Meeting 2022

October 16, 2022

Outline

(1) Problem
(2) Inexact Proximal Gradient Method
(3) Support Identification
(4) Numerical Results

Problem

Outline

(1) Problem
(2) Inexact Proximal Gradient Method

3 Support Identification

4 Numerical Results

Problem of Interest

Sparse optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)+r(x)
$$

- f : loss function; L-smooth:
- logistic regression; $f(x)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i} x^{T} d_{i}}\right)$
- Huber loss function; $f(x)= \begin{cases}\frac{1}{2 \mu}\|x\|^{2}, & \|x\| \leq \mu \\ \|x\|-\frac{\mu}{2}, & \|x\|>\mu\end{cases}$
- \tanh activation function; $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
- r : group sparsity inducing regularizer; convex and nonsmooth:
- group $\ell_{1}: r(x)=\sum_{i \in n_{\mathcal{G}}} \lambda_{i}\left\|[x]_{g_{i}}\right\|_{2} \quad\left(\lambda_{i}>0\right.$ for all $i \in n_{\mathcal{G}}$ and $\left.\bigcup_{i \in n_{\mathcal{G}}} g_{i}=[n]\right)$
- Example: for $x \in \mathbb{R}^{3}$

$$
\begin{array}{ll}
\text { non-overlapping } & g_{1}=\{1,2\} \text { and } g_{2}=\{3\}: r(x)=\lambda_{1}\left\|\binom{x_{1}}{x_{2}}\right\|+\lambda_{2}\left\|x_{3}\right\| . \\
\text { overlapping } & g_{1}=\{1,2\} \text { and } g_{2}=\{2,3\}: r(x)=\lambda_{1}\left\|\binom{x_{1}}{x_{2}}\right\|+\lambda_{2}\left\|\binom{x_{2}}{x_{3}}\right\| .
\end{array}
$$

- problems arise in signal processing and machine learning applications
- jointly select genes that regulate hormone levels
- sparsity in group structure imposes more optimization challenges

Brief Literature Review

- First Order Methods
- (Accelerated) Proximal Gradient Method: ISTA/FISTA
[Donoho, 1995, Beck and Teboulle, 2009]

$$
x_{k+1} \leftarrow \arg \min _{x \in \mathbb{R}^{n}}\left\{\frac{1}{2 \alpha_{k}}\left\|x-\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)\right\|_{2}^{2}+r(x)\right\}
$$

- Second Order Methods
- Proximal Newton Method [Lee et al., 2014]

$$
x_{k+1} \leftarrow \arg \min _{x \in \mathbb{R}^{n}}\left\{\frac{1}{2 \alpha_{k}}\left\|x-\left(x_{k}-\alpha_{k} H_{k}^{-1} \nabla f\left(x_{k}\right)\right)\right\|_{H_{k}}^{2}+r(x)\right\}
$$

- Other Methods
- Stochastic Settings: SAGA[Defazio et al., 2014] and ProxSVRG[Xiao and Zhang, 2014]

$$
x_{k+1} \leftarrow \arg \min _{x \in \mathbb{R}^{n}}\left\{\frac{1}{2 \alpha_{k}}\left\|x-\left(x_{k}-\alpha_{k} d_{k}\right)\right\|_{2}^{2}+r(x)\right\}
$$

with d_{k} being some form of stochastic gradient estimator for $\nabla f\left(x_{k}\right)$.

Challenges

```
Algorithm Proximal Gradient Method - Skeleton
    1: Initialization: pick \(x_{0} \in \operatorname{int}(\operatorname{dom}(f))\).
    while not converged do
    3:
    4: \(\quad\) Choose some \(\alpha_{k}>0\);
    5: \(\quad\) Compute \(x_{k+\frac{1}{2}}=\arg \min _{x \in \mathbb{R}^{n}}\left\{\frac{1}{2 \alpha_{k}}\left\|x-\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)\right\|_{2}^{2}+r(x)\right\}\);
    6:
    end while
```

However, all aforementioned methods require the exact solve of the sub-problem. What if we cannot solve the sub-problem exactly?

1: This is too hard and I give up.
2: Solve the sub-problem as accurate as possible and hope for the good.
3: OR ...

Outline

(2) Inexact Proximal Gradient Method
(3) Support Identification
(4) Numerical Results

Inexact Proximal Gradient

```
Algorithm Inexact Proximal Gradient Method - Skeleton
    Initialization: pick \(x_{0} \in \operatorname{int}(\operatorname{dom}(f))\).
    while not converged do
            Choose some \(\alpha_{k}>0\);
            Compute \(\hat{x}_{k+1} \approx \arg \min _{x \in \mathbb{R}^{n}}\left\{\phi_{p}(x):=\frac{1}{2 \alpha_{k}}\left\|x-\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)\right\|_{2}^{2}+r(x)\right\}\);
            Get the next iterate \(x_{k+1}\);
    end while
```

Define ϵ_{k} accurate solution \hat{x}_{k+1} as $\phi_{p}\left(\hat{x}_{k+1}\right)-\phi_{p}^{*} \leq \epsilon_{k}$ for any $k \geq 1$

- Option_1: $\epsilon_{k}=\gamma_{1}\left\|\hat{x}_{k+1}-x_{k}\right\|^{2} \quad$ (ours)
- Option_2: $\epsilon_{k}=\gamma_{2}\left(\phi\left(x_{k}\right)-\phi_{p}^{*}\right) \quad$ ([Lee and Wright, 2019])
- Option_3: $\epsilon_{k}=\mathcal{O}\left(1 / k^{\delta}\right)$ with $\delta>2$ ([Schmidt et al., 2011])

Wait.... how could it be practical as one needs to know ϕ_{p}^{*} !

Inexact Proximal Gradient: Test the termination conditions

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \phi_{p}(x):=\frac{1}{2 \alpha_{k}}\left\|x-\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)\right\|_{2}^{2}+r(x) \\
& \max _{y \in \mathcal{Y}} \phi_{d}(y) \text { for some } \mathcal{Y} \text { and } \phi_{d}
\end{aligned}
$$

Design a primal-dual type sub-problem solver. For the any primal-dual solution pair $\left(\hat{x}_{k+1}, \hat{y}_{k+1}\right)$, and define the duality gap

$$
\operatorname{Gap}_{k}:=\phi_{p}\left(\hat{x}_{k+1}\right)-\phi_{d}\left(\hat{y}_{k+1}\right)
$$

Since $\phi_{p}\left(\hat{x}_{k+1}\right)-\phi_{k}^{*} \leq \operatorname{Gap}_{k}$, then

- $\operatorname{Gap}_{k} \leq \gamma_{1}\left\|\hat{x}_{k+1}-x_{k}\right\|^{2} \quad$ implies Option_1
- $\operatorname{Gap}_{k} \leq \gamma_{2}\left(\phi_{p}\left(x_{k}\right)-\phi_{d}\left(\hat{y}_{k+1}\right)\right)$ implies Option_2
- $\operatorname{Gap}_{k} \leq \mathcal{O}\left(1 / k^{\delta}\right) \quad$ implies Option_3

For Option_2, [Lee and Wright, 2019] points out that for any solver (e.g. SpaRSA [Wright et al., 2009]) that has ρ-linear rate convergence for solving the sub-problem, suffice it to run $\mathcal{O}\left(\gamma_{2} / \log \rho\right)$ number of iterations and then just terminate.

Global convergence

Assumptions:

- f is a C^{1} function with ∇f Lipschitz continuous; proper, and closed;
- r are convex, proper, and closed
- $f+r$ is bounded below

Theorem 1 (worst-case complexity, informal)

For $\epsilon \in(0, \infty)$, the maximum number of iterations required before x_{k} becomes the ϵ-approximate stationary point is $\mathcal{O}\left(\epsilon^{-2}\right)$.

Remark: This is the same complexity as if the sub-problem is solved exactly.

Outline

(2) Inexact Proximal Gradient Method
(3) Support Identification

4 Numerical Results

Preliminaries

support identification

The support of a point $x \in \mathbb{R}^{n}$ is defined as

$$
\mathcal{S}(x)=\left\{i \in\left\{1, \ldots, n_{\mathcal{G}}\right\} \mid[x]_{g_{i}} \neq 0\right\} .
$$

We say that support identification happens at point $x \in \mathbb{R}^{n}$ for a solution $x^{*} \in \mathbb{R}^{n}$ to the problem if $\mathcal{S}(x)=\mathcal{S}\left(x^{*}\right)$.

$$
\begin{aligned}
& S(x)=\{2\} \\
& S\left(x^{*}\right)=\{2\}
\end{aligned}
$$

g_{1}

$$
\begin{aligned}
& \mathrm{S}(\mathrm{x})=\{1,2\} \\
& \mathrm{S}\left(x^{*}\right)=\{2\}
\end{aligned}
$$

Figure: Support identification. The solution $x^{*} \in \mathbb{R}^{5}$ with group structures $g_{1}=\{1,2,3\}$ and $g_{2}=\{4,5\}$. Support identification happens at the x for the left figure while not for the right one.

Why we care about the support identificaiton?

- Terminate the algorithm before finding the solution (variable selection problems)
- Design high-order methods (subspace acceleration)

Challenge

Assume \hat{x}_{k+1} and x_{k+1}^{*} are the inexact solution and exact solution to the sub-problem and $\mathcal{S}\left(x_{k+1}^{*}\right)=\mathcal{S}\left(x^{*}\right)$.

Regardless of how accurately the sub-problem is being approximately solved,
it is not guaranteed that $\mathcal{S}\left(\hat{x}_{k+1}\right)=\mathcal{S}\left(x_{k+1}^{*}\right)$!

A sub-solver that exploits the geometric property of the $r(x)$ is required.

Case Study: Overlapping-Group ℓ_{1} regularizer

- Formulation:

$$
\begin{equation*}
r(x)=\sum_{i \in n_{\mathcal{G}}} \lambda_{i}\left\|[x]_{g_{i}}\right\|_{2} \text { with } \lambda_{i}>0 \text { for all } i \in n_{\mathcal{G}} \text { and } \bigcup_{i \in n_{\mathcal{G}}} g_{i}=[n] \tag{1}
\end{equation*}
$$

where $[x]_{g_{i}}$ is a sub-vector of x whose coordinates are in the group g_{i}.

- Example:

$$
g_{1}=\{1,2,3\}, g_{2}=\{3,4,5\}, g_{3}=\{1,3,5\}
$$

Primal-Dual Problem Pair for the proximal subproblem

To avoid the cluttered notations, we introduce $u_{k}:=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)$, then the sub-problem and its dual problem can be written as

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}}\left\{\phi_{p}\left(x ; x_{k}, \alpha_{k}\right):=\frac{1}{2 \alpha_{k}}\left\|x-u_{k}\right\|^{2}+\sum_{i=1}^{n_{\mathcal{G}}}[\lambda]_{i}\left\|[x]_{g_{i}}\right\|\right\} \\
& \downarrow \\
& \left\{\begin{array}{c}
\min _{x, z} \frac{1}{2 \alpha_{k}}\left\|x-u_{k}\right\|^{2}+\lambda^{T} z \\
\text { s.t. } \quad\left[\begin{array}{c}
{[x]_{g_{i}}} \\
{[z]_{i}}
\end{array}\right] \in \mathcal{K}_{i}:=\left\{\left.\left[\begin{array}{l}
v \\
\theta
\end{array}\right] \right\rvert\, v \in \mathbb{R}^{\left|g_{i}\right|}, \theta \in \mathbb{R}, \text { and }\|v\| \leq \theta\right\} \text { for all } i \in\left[n_{\mathcal{G}}\right]
\end{array}\right.
\end{aligned}
$$

Primal-Dual Problem Pair for the Proximal Subproblem: Cont'

Primal-Dual Problem Pair

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{n}}\left\{\phi_{p}\left(x ; x_{k}, \alpha_{k}\right):=\frac{1}{2 \alpha_{k}}\left\|x-u_{k}\right\|^{2}+\sum_{i=1}^{n_{\mathcal{G}}}[\lambda]_{i}\left\|[x]_{g_{i}}\right\|\right\} \tag{2}\\
& \max _{\hat{y} \in \mathcal{F}_{d}}\left\{\phi_{d}\left(\hat{y} ; x_{k}, \alpha_{k}\right):=-\frac{\alpha_{k}}{2}\|A \hat{y}\|^{2}-u_{k}^{T} A \hat{y}\right\} \tag{3}
\end{align*}
$$

(1) \mathcal{M} is a set value mapping that relates $[x]_{g_{i}}$ to $[\hat{y}]_{\mathcal{M}(i)}$;
(2) $\mathcal{F}_{d}:=\left\{\hat{y} \in \mathbb{R}^{\sum_{i=1}^{n_{\mathcal{G}}}\left|g_{i}\right|} \mid\left\|[\hat{y}]_{\mathcal{M}(i)}\right\| \leq[\lambda]_{i}\right.$ for each $\left.i \in\left[n_{\mathcal{G}}\right]\right\}$
(3) A is a sparse, full column-rank, and flat matrix.

Primal-Dual Problem Pair for the Proximal Subproblem: Cont'

Primal-Dual Problem Pair

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}}\left\{\phi_{p}\left(x ; x_{k}, \alpha_{k}\right):=\frac{1}{2 \alpha_{k}}\left\|x-u_{k}\right\|^{2}+\sum_{i=1}^{n_{\mathcal{G}}}[\lambda]_{i}\left\|[x]_{g_{i}}\right\|\right\} \\
& \max _{\hat{y} \in \mathcal{F}_{d}}\left\{\phi_{d}\left(\hat{y} ; x_{k}, \alpha_{k}\right):=-\frac{\alpha_{k}}{2}\|A \hat{y}\|^{2}-u_{k}^{T} A \hat{y}\right\}
\end{aligned}
$$

Example 2

Consider the group structure for problem (1) given by

$$
g_{1}=\{1,2,3\}, \quad g_{2}=\{2,3,4\}, \quad \text { and } g_{3}=\{1,3,5\}
$$

$$
A \hat{y}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8} \\
y_{9}
\end{array}\right]
$$

Solve the Primal-Dual Subproblem

Primal-Dual Problem Pair

$$
\begin{align*}
& x_{k}^{*}=\arg \min _{x \in \mathbb{R}^{n}}\left\{\phi_{p}\left(x ; x_{k}, \alpha_{k}\right):=\frac{1}{2 \alpha_{k}}\left\|x-u_{k}\right\|^{2}+\sum_{i=1}^{n_{\mathcal{G}}}[\lambda]_{i}\left\|[x]_{g_{i}}\right\|\right\} \tag{4}\\
& \hat{\mathcal{Y}}\left(x_{k}, \alpha_{k}\right)=\operatorname{Arg} \max _{\hat{y} \in \mathcal{F}_{d}}\left\{\phi_{d}\left(\hat{y} ; x_{k}, \alpha_{k}\right):=-\frac{\alpha_{k}}{2}\|A \hat{y}\|^{2}-u_{k}^{T} A \hat{y}\right\} \tag{5}
\end{align*}
$$

Lemma 3 (linking equation)

The unique solution x_{k}^{*} satisfies $x_{k}^{*}=u_{k}+\alpha_{k} A \hat{y}_{k}^{*}$ for all $\hat{y}_{k}^{*} \in \hat{\mathcal{Y}}\left(x_{k}, \alpha_{k}\right)$.

Lemma 4

Let $i \in\left[n_{\mathcal{G}}\right]$. If there exists $\hat{y}_{k}^{*} \in \hat{\mathcal{Y}}\left(x_{k}, \alpha_{k}\right)$ satisfying $\left\|\left[\hat{y}_{k}^{*}\right]_{\mathcal{M}(i)}\right\|<[\lambda]_{i}$, then $\left[x_{k}^{*}\right]_{g_{i}}=0$.

Primal-Dual Subproblem Solver: graphical demo

Enhanced Projected Gradient Dual Gradient Ascent

Given the t th iterate $\hat{y}_{k, t}$:
(1) Get $\hat{y}_{k, t+1} \leftarrow \operatorname{PGA}\left(\hat{y}_{k, t+1}\right)$.
(2) Construct a trail primal iterate $x_{k, t+1} \leftarrow u_{k}+\alpha_{k} A \hat{y}_{k, t+1}$.
(3) Project $\left[x_{k, t+1}\right]_{g_{i}}$ to 0 based on if $\left\|\left[\hat{y}_{k, t+1}\right]_{g_{i}}\right\|<\lambda_{i}-\epsilon_{k-1}$ for all $i \in\left[n_{\mathcal{G}}\right]$.

Support Identification Complexity

Assumption 3.1

- (non-degeneracy) The quantity

$$
\delta_{\mathrm{nd}}:= \begin{cases}\min _{\hat{y} \in \hat{\mathcal{Y}}\left(x^{*}, \alpha^{*}\right), i \notin \mathcal{S}\left(x^{*}\right)}\left([\lambda]_{i}-\left\|[\hat{y}]_{\mathcal{M}(i)}\right\|\right) & \text { if } \mathcal{S}\left(x^{*}\right) \nsubseteq\left[n_{\mathcal{G}}\right], \\ 1 & \text { if } \mathcal{S}\left(x^{*}\right)=\left[n_{\mathcal{G}}\right]\end{cases}
$$

satisfies $\delta_{\text {nd }}>0$. It follows that $\delta^{*}:=\min \left\{1, \delta_{\text {nd }}\right\} \in(0,1]$.

- f is μ_{f} strongly convex and L_{g} smooth.

Define $\Theta:=\left\{\begin{array}{ll}\min \left\{1, \min _{i \in \mathcal{S}\left(x^{*}\right)}\left\|\left[x^{*}\right]_{g_{i}}\right\|\right\} & \text { if } \mathcal{S}\left(x^{*}\right) \neq \emptyset, \\ 1 & \text { otherwise. }\end{array} \quad \theta:=\left(1-\mu_{f} / L_{g}\right) \in[\eta, 1)\right.$

Theorem 5 (Support identification complexity)

For some $\omega \in(0,1)$, the sequence $\left\{\epsilon_{k}\right\}$ satisfies $\epsilon_{k+1} \leq \omega^{2} \epsilon_{k}$. Then, under the Assumption 3.1 $\mathcal{S}\left(x_{k+1}\right)=\mathcal{S}\left(x^{*}\right)$ for all $k \geq K$ with

$$
K:= \begin{cases}\max \left(\mathcal{O}\left(\frac{\log \Theta}{\log \theta}\right), \mathcal{O}\left(\frac{\log \delta^{*}}{\log \left(\max \left\{\omega^{\rho} \min , \theta^{*}, \omega^{2 \iota}\right\}\right)}\right)\right) & \text { if } \omega<\theta \\ \max \left(\mathcal{O}\left(\frac{\log \Theta}{\log \omega}\right), \mathcal{O}\left(\frac{\log \delta^{*}}{\log \left(\max \left\{\omega^{\min \left\{\rho_{\min }, \rho^{*}\right\}}, \omega^{2 \iota}\right\}\right)}\right)\right) & \text { if } \omega>\theta \\ \max \left(\mathcal{O}\left(C_{\Theta}\right), \mathcal{O}\left(C_{\delta^{*}}\right)\right) & \text { if } \omega=\theta\end{cases}
$$

Outline

(2) Inexact Proximal Gradient Method

3 Support Identification
(4) Numerical Results

Setup

- Logistic loss with overlapping group ℓ_{1} regularizer

$$
f(x)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i} x^{T} d_{i}}\right) .
$$

- 132 problem instances created based 11 datasets from LIBSVM
- Compare Option_1, Option_2, and Option_3 in terms of the solution sparsity, solution quality, running time
- Option_1: $\epsilon_{k}=\gamma_{1}\left\|\hat{x}_{k+1}-x_{k}\right\|^{2}$
- Option_2: $\epsilon_{k}=\gamma_{2}\left(\phi\left(x_{k}\right)-\phi_{p}^{*}\right)$
- Option_3: $\epsilon_{k}=\mathcal{O}\left(1 / k^{\delta}\right)$

Sensitivity to parameters

Figure: Compare the performance in CPU time for three options with different algorithm parameters. γ_{1} for Option_1 and γ_{2} for Option_2 are both selected from $\{0.1,0.2,0.3,0.4,0.5\}$ and const for Option_3 is selected from $\left\{10^{i}\right\}_{i=0}^{4}$.

Time comparison

	approximate solution found	maximum iteration limit	maximum time limit	numerical difficulties
Option_1	108	16	7	1
Option_2	107	15	8	2
Option_3	107	16	9	0

Table: Termination status summary for the three algorithm variants Option_1, Option_2, and Option_3 on the 132 test instances with our subproblem solver.

Figure: A performance profile for CPU time (seconds). In each plot, we exclude problem instances for which both algorithms fail.

$$
\text { height of the bar }=-\ln \left(\frac{\text { metric of one algorithm }}{\text { metric of another algorithm }}\right)
$$

Enhanced Projected Gradient Ascent v.s. Vanilla Projected Gradient Ascent

		IPG+EPGA			IPG+PGA		
data set	Λ	$\# \mathrm{z}$	$\# \mathrm{nz}$	F	$\# \mathrm{z}$	$\# \mathrm{nz}$	F
a9a	0.013458	12	2	0.508337	0	14	0.508337
colon-cancer	0.017751	213	10	0.336270	1	222	0.336270
duke breast-cancer	0.016198	779	13	0.246910	2	790	0.246910
gisette	0.012003	536	20	0.402671	2	554	0.402671
leukemia	0.020514	781	11	0.258627	0	792	0.258627
madelon	0.000402	19	37	0.666079	0	56	0.666112
mushrooms	0.009528	10	3	0.316138	0	13	0.316138
w8a	0.006687	24	10	0.429029	0	34	0.429029

Table: The test results for IPG using EPGA or PGA algorithm as the subproblem solvers. Columns "\#z", "\#nz", and " F " give the number of zero groups, the number of non-zero groups, and the final objective value, respectively.

Summary

- Discussed two adaptive and implementable termination conditions for the inexact proximal gradient method (IPG) and provided unified convergence analysis.
- Crafted a specialized proximal subproblem solver to enable the support identification property of the IPG method when using the overlapping group ℓ_{1} regularizer.
- Derived the support identification complexity for IPG method when using the overlapping group ℓ_{1} regularizer.

Q\&A

Thank you and Questions?

Contact: yud319@lehigh.edu

References I

[Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009).
A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202.
[Defazio et al., 2014] Defazio, A., Bach, F., and Lacoste-Julien, S. (2014).
Saga: a fast incremental gradient method with support for non-strongly convex composite objectives.
In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 1, pages 1646-1654.
[Donoho, 1995] Donoho, D. (1995).
Denoising by soft-thresholding. Trans. Inform. Theory, 41:613-627.
[Lee and Wright, 2019] Lee, C.-p. and Wright, S. J. (2019).
Inexact successive quadratic approximation for regularized optimization. Computational Optimization and Applications, 72(3):641-674.
[Lee et al., 2014] Lee, J. D., Sun, Y., and Saunders, M. A. (2014).
Proximal newton-type methods for minimizing composite functions.
SIAM Journal on Optimization, 24(3):1420-1443.

References II

[Schmidt et al., 2011] Schmidt, M., Roux, N. L., and Bach, F. (2011).
Convergence rates of inexact proximal-gradient methods for convex optimization.
[Wright et al., 2009] Wright, S. J., Nowak, R. D., and Figueiredo, M. A. (2009).
Sparse reconstruction by separable approximation.
IEEE Transactions on Signal Processing, 57(7):2479-2493.
[Xiao and Zhang, 2014] Xiao, L. and Zhang, T. (2014).
A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075.

