Stochastic Proximal Gradient Method: Variance Reduction and Support Identification

Yutong Dai¹ Guanyi Wang² Frank E. Curtis¹ Daniel P. Robinson¹

Lehigh University¹ National University of Singapore²

INFORMS Annual Meeting 2023

Oct 16, 2023

Outline

Introduction

- Problem Setup
- Variance Reduction
- Support Identification

2 Algorithm Design

Theoretical Results

- Convergence Complexity
- Support Identification Complexity

4 Numerical Results

Outline

Introduction

- Problem Setup
- Variance Reduction
- Support Identification

2 Algorithm Design

3 Theoretical Results

- Convergence Complexity
- Support Identification Complexity

4 Numerical Results

Problem of Interest

Sparse optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + r(\mathbf{x}) := \mathbb{E}_{\boldsymbol{\xi}\sim\mathcal{P}}[\ell(\mathbf{x};\boldsymbol{\xi})] + r(\mathbf{x})$$

- $\ell(x; \xi)$: loss function; convex and smooth almost surely.
 - regression problem: $f(x) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i x^T d_i})$
 - diffusion problem: $f(x) = \mathbb{E}_{t \sim [1, T], p \sim \mathcal{P}, \epsilon_t \sim N(0, I)} \left[\left\| \epsilon_t \ell \left(x; \sqrt{\overline{\alpha}_t} p + \sqrt{1 \overline{\alpha}_t} \epsilon_t, t \right) \right\|^2 \right]$

• r(x): group sparsity inducing regularizer; convex and nonsmooth:

- group ℓ_1 : $r(x) = \sum_{i \in n_G} \lambda_i ||[x]_{g_i}||_2 \ \left(\lambda_i > 0 \text{ for all } i \in n_G \text{ and } \bigcup_{i \in n_G} g_i = [n]\right)$
- Example: for $x \in \mathbb{R}^3$

non-overlapping
$$g_1 = \{1, 2\}$$
 and $g_2 = \{3\} : r(x) = \lambda_1 \left\| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\| + \lambda_2 \|x_3\|$.
overlapping $g_1 = \{1, 2\}$ and $g_2 = \{2, 3\} : r(x) = \lambda_1 \left\| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\| + \lambda_2 \left\| \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} \right\|$.

(Stochastic) Proximal Gradient Methods

• Access to true gradients

$$x_{k+1} = \operatorname{Prox}_{\alpha_k r}(x_k - \alpha_k \nabla f(x_k)) := \arg \min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k \nabla f(x_k))\|_2^2 + r(x) \right\}$$

No/Restricted access to true gradients

$$x_{k+1} = \operatorname{Prox}_{\alpha_k r}(x_k - \alpha_k d_k) := \arg \min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \| x - \left(x_k - \alpha_k d_k \right) \|_2^2 + r(x) \right\}$$

with d_k being some form of stochastic gradient estimator for $\nabla f(x_k)$, e.g.,

$$d_k =
abla \ell(x_k; \xi)$$
 with $\xi \sim \mathcal{P}$.

finite-sum structure

 $f(x) = \frac{1}{N} \sum_{i=1}^{N} \ell(x; \xi_i)$. variance reduced d_k is constructed by using the control of variate idea.

• SAGA¹: form a gradient table
$$G = [\nabla \ell(x_{t_1}; \xi_1), \cdots, \nabla \ell(x_{t_N}; \xi_N)] \in \mathbb{R}^{n \times N}$$
,
$$d_k = \nabla \ell(x_k; \xi_i) - G[:, i] + \frac{1}{N} G\mathbf{1} \text{ and } G[:, i] \leftarrow \nabla \ell(x_k; \xi_i)$$

• ProxSVRG²: periodic full gradient evaluation at anchor point \tilde{x}_k .

 $d_k = \nabla \ell(x_k; \xi_i) - \nabla \ell(\tilde{x}_k; \xi_i) + \nabla f(\tilde{x}_k)$ and \tilde{x}_k is updated periodically

Other methods ProxSARAH, ProxSpider, and more ...

¹Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. "SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives". In: Advances in neural information processing systems 27 (2014).

²Lin Xiao and Tong Zhang. "A proximal stochastic gradient method with progressive variance reduction". In: SIAM Journal on Optimization 24.4 (2014), pp. 2057–2075.

Support Identification

The **support** of a point $x \in \mathbb{R}^n$ is defined as

$$\mathcal{S}(x) = \{i \in \{1, \ldots, n_{\mathcal{G}}\} \mid [x]_{g_i} \neq 0\}.$$

We say that **support identification** happens at point $x \in \mathbb{R}^n$ for a solution $x^* \in \mathbb{R}^n$ to the problem if $S(x) = S(x^*)$.

Figure: Support identification. The solution $x^* \in \mathbb{R}^5$ with group structures $g_1 = \{1, 2, 3\}$ and $g_2 = \{4, 5\}$. Support identification happens at the $x \in \mathbb{R}^5$ for the left figure while not for the right one.

Design an algorithm that can simultaneously

- achieve variance reduction
 - X full gradient evaluation
 - X storing a gradient table
- establish the support identification in the stochastic setting

Outline

Introduction

- Problem Setup
- Variance Reduction
- Support Identification

2 Algorithm Design

3 Theoretical Results

- Convergence Complexity
- Support Identification Complexity

4 Numerical Results

Algorithm Design

Algorithm S-PStorm³

1: for k = 1, 2, ..., doDraw *m* i.i.d samples $\{\xi_{k1}, \cdots, \xi_{km}\}$ w.r.t. \mathcal{P} . 2. Set $v_k \leftarrow \frac{1}{m} \sum_{i=1}^m \nabla \ell(\mathbf{x}_k; \xi_{ki})$. 3. if k = 1 then Δ٠ Set $d_{\mu} \leftarrow v_{\mu}$ 5. else 6: $u_k \leftarrow \frac{1}{m} \sum_{i=1}^m \nabla \ell(\mathbf{x}_{k-1}; \xi_{ki}).$ 7. Set $d_k \leftarrow v_k + (1 - \beta_k)(d_{k-1} - \mu_k)$. 8 end if 9: $\mathsf{Compute} \,\, y_k \leftarrow \mathsf{arg\,min}_{x \in \mathbb{R}^n} \, \Big\{ \phi_\rho(x; x_k, \alpha_k, d_k) := \tfrac{1}{2\alpha_k} \|x - \big(x_k - \alpha_k d_k\big)\|_2^2 + r(x) \Big\}.$ 10: Set $x_{k+1} \leftarrow x_k + \zeta \beta_k (y_k - x_k)$. 11. 12: end for

³Yangyang Xu and Yibo Xu. "Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization". In: Journal of Optimization Theory and Applications 196.1 (2023), pp. 266–297.

INFORMS 202

Algorithm Design

Algorithm S-PStorm³

1: for k = 1, 2, ..., doDraw *m* i.i.d samples $\{\xi_{k1}, \cdots, \xi_{km}\}$ w.r.t. \mathcal{P} . 2. Set $v_k \leftarrow \frac{1}{m} \sum_{i=1}^m \nabla \ell(\mathbf{x}_k; \xi_{ki})$. 3. if k = 1 then Δ٠ Set $d_{\mu} \leftarrow v_{\mu}$ 5. 6: else $u_k \leftarrow \frac{1}{m} \sum_{i=1}^m \nabla \ell(\mathbf{x}_{k-1}; \xi_{ki}).$ 7. Set $d_k \leftarrow v_k + (1 - \beta_k)(d_{k-1} - \mu_k)$. 8 end if 9: Compute $y_k \leftarrow \arg\min_{x \in \mathbb{R}^n} \left\{ \phi_p(x; x_k, \alpha_k, d_k) := \frac{1}{2\alpha_k} \|x - (x_k - \alpha_k d_k)\|_2^2 + r(x) \right\}.$ 10: Set $x_{k+1} \leftarrow x_k + \zeta \beta_k (y_k - x_k)$. 11. 12: end for

Inexact Proximal Operator Evaluation?

$$y_k pprox_{\widetilde{\varepsilon}_k} \arg\min_{x\in\mathbb{R}^n} \left\{ rac{1}{2lpha_k} \|x-(x_k-lpha_k d_k)\|_2^2 + r(x)
ight\}.$$

Definition of $\tilde{\varepsilon}_k$ -inexact solution:

 $\phi_p(y_k; x_k, \alpha_k, d_k) \leq \phi_p(y_k^*; x_k, \alpha_k, d_k) + \tilde{\varepsilon}_k$ where y_k^* is the solution.

INFORMS 2023

³Yangyang Xu and Yibo Xu. "Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization". In: Journal of Optimization Theory and Applications 196.1 (2023), pp. 266–297.

Outline

Introduction

- Problem Setup
- Variance Reduction
- Support Identification

2 Algorithm Design

3 Theoretical Results

- Convergence Complexity
- Support Identification Complexity

Interview Numerical Results

Key Lemma: bounding the error $\epsilon_k = d_k - \nabla f(x_k)$

Tail bound.

[Rephrased from^a.] Suppose $\{S_t\}_{t=0}^{\infty}$ forms a martingale and denote $e_t = S_t - S_{t-1}$. If $\sum_{t=1}^{\infty} ||e_t||_{\infty}^2 \leq \text{const}$ almost surely. Then for $\rho > 0$,

$$\mathbb{P}\left[\sup_{t} \|S_{t}\| \geq \rho\right] \leq 2\exp\left(-\frac{\rho^{2}}{2\texttt{const}^{2}}\right)$$

^alosif Pinelis. "Optimum bounds for the distributions of martingales in Banach spaces". In: The Annals of Probability (1994), pp. 1679–1706.

Key Lemma: bounding the error $\epsilon_k = d_k - \nabla f(x_k)$

Tail bound.

[Rephrased from^a.] Suppose $\{S_t\}_{t=0}^{\infty}$ forms a martingale and denote $e_t = S_t - S_{t-1}$. If $\sum_{t=1}^{\infty} ||e_t||_{\infty}^2 \leq \text{const}$ almost surely. Then for $\rho > 0$,

$$\mathbb{P}\left[\sup_{t} \|S_{t}\| \geq \rho\right] \leq 2\exp\left(-\frac{\rho^{2}}{2\texttt{const}^{2}}\right)$$

^alosif Pinelis. "Optimum bounds for the distributions of martingales in Banach spaces". In: The Annals of Probability (1994), pp. 1679–1706.

- Decompose $\epsilon_k = d_k \nabla f(x_k) = \sum_{t=0}^k \frac{e_{kt}}{e_k}$.
- Define $S_{kt} = \sum_{i=0}^{t} e_{ki}$ for all $0 \le t \le k$. Observe that $\epsilon_k = S_{kk}$.
- Derive the upper bound of $\sum_{t=1}^{k} ||e_{kt}||^2$.

A high probability bound on ϵ_k .

Algorithmic Choices: $\beta_k = \min\{1/2, c/(k+1)\}$ with c > 1 and $\alpha_k \equiv \underline{\alpha}$ for all $k \ge 1$. Let $\eta_k > 0$, and define $\underline{k} = \lceil (2c) - 1 \rceil$ and

$$U(k) = \Theta\left(\max\left\{\left(rac{k+1}{k+2}
ight)^c, \; rac{c}{\sqrt{k+2}}
ight\}\sqrt{\lograc{2}{\eta_k}}
ight)$$

Theorem 1

Under certain assumptions, let $\eta_k = \frac{\eta_0}{k^2}$ for all $k \ge 1$ with $\eta_0 \in (0, 6/\pi^2)$, then

$$\mathbb{P}\left[\bigcap_{k\geq \underline{k}}^{\infty}\left\{\|\epsilon_k\|\leq U(k)\right\}\right]\geq 1-\frac{\eta_0\pi^2}{6}.$$

 $U(k) = \Theta(\max\{\sqrt{\log k}/k^c, \sqrt{\log k/k}\})$

Iterates Convergence

Additional Assumption: f is μ_f strongly convex. Algorithmic choice: Let $\underline{\alpha} = \mu_f / L_g^2$, $\zeta \in (0, 2)$, $\theta \ge 2$, $c = (2\theta L_g^2) / (\zeta \mu_f^2) > 2$, and $\underline{k} = \lceil 2c - 1 \rceil$. Set $\eta_k = \eta_0 / k^2$ for all $k \ge 1$ with $\eta_0 \in (0, 6/\pi^2)$.

Theorem 2 (exact proximal operator evaluation)

$$\mathbb{P}\left[\bigcap_{k\geq \underline{k}}^{\infty}\left\{\left\|x_{k}-x^{*}\right\|^{2}\leq \bar{c}_{1}\frac{\left\|x_{\underline{k}}-x^{*}\right\|^{2}}{k^{\theta}}+\bar{c}_{2}\frac{\log\frac{2k}{\eta_{0}}}{k}\right\}\right]\geq 1-\eta_{0}\pi^{2}/6>0.$$

Iterates Convergence

Additional Assumption: f is μ_f strongly convex. Algorithmic choice: Let $\underline{\alpha} = \mu_f / L_g^2$, $\zeta \in (0, 2)$, $\theta \ge 2$, $c = (2\theta L_g^2) / (\zeta \mu_f^2) > 2$, and $\underline{k} = \lceil 2c - 1 \rceil$. Set $\eta_k = \eta_0 / k^2$ for all $k \ge 1$ with $\eta_0 \in (0, 6/\pi^2)$.

Theorem 2 (exact proximal operator evaluation)

$$\mathbb{P}\left[\bigcap_{k\geq \underline{k}}^{\infty}\left\{\left\|x_k-x^*\right\|^2\leq \bar{c}_1\frac{\|x_{\underline{k}}-x^*\|^2}{k^{\theta}}+\bar{c}_2\frac{\log\frac{2k}{\eta_0}}{k}\right\}\right]\geq 1-\eta_0\pi^2/6>0.$$

Theorem 3 (inexact proximal operator evaluation)

$$\mathbb{P}\left[\bigcap_{k\geq \underline{k}}^{\infty} \left\{ \|x_k - x^*\|^2 \leq \bar{c}_1' \frac{\|x_{\underline{k}} - x^*\|^2}{k^{\theta}} + \bar{c}_2' \frac{\log \frac{2k}{\eta_0}}{k+1} + \bar{c}_3' A_k \right\} \right] \geq 1 - \eta_0 \pi^2/6 > 0,$$

where $A_k := \frac{1}{(k+1)^{\theta}} \cdot \sum_{i=1}^k (i+3)^{\theta} \tilde{\varepsilon}_i$ and $\{\tilde{\varepsilon}_i\}$ measure the inexactness of the proximal operator evaluation.

Choose $\tilde{\varepsilon}_i = \log(i+1)/(i+1)^2$ for all *i* to recover the complexity for the exact case.

Definition: Support Identification in the Stochastic Setting

Support identification in stochastic setting can be defined in the **expectation sense**⁴, in the **high-probability** sense⁵, and in the **almost surely sense**⁶.

Definition 4 (support identification with high probability)

There exist $K \in \mathbb{N}_+$ and $p \in (0, 1]$ such that

 $\mathbb{P}\left[\{\mathcal{S}(x_k) = \mathcal{S}(x^*)\}\right] \ge 1 - p \text{ for each } k \ge K.$

⁴Yifan Sun et al. "Are we there yet? Manifold identification of gradient-related proximal methods". In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, 2019, pp. 1110–1119.

⁵Sangkyun Lee and Stephen J Wright. "Manifold Identification in Dual Averaging for Regularized Stochastic Online Learning.". In: Journal of Machine Learning Research 13.6 (2012).

⁶Clarice Poon, Jingwei Liang, and Carola Schoenlieb. "Local convergence properties of SAGA/Prox-SVRG and acceleration". In: International Conference on Machine Learning. PMLR. 2018, pp. 4124–4132.

Definition: Support Identification in the Stochastic Setting

Support identification in stochastic setting can be defined in the **expectation sense**⁴, in the **high-probability** sense⁵, and in the **almost surely sense**⁶.

Definition 4 (support identification with high probability)

There exist $K \in \mathbb{N}_+$ and $p \in (0, 1]$ such that

 $\mathbb{P}\left[\{\mathcal{S}(x_k) = \mathcal{S}(x^*)\}\right] \ge 1 - p \text{ for each } k \ge K.$

Definition 5 (consistent identification with high probability)

There exist $K \in \mathbb{N}_+$ and $p \in (0, 1]$ such that

$$\mathbb{P}\left[\bigcap_{k\geq K}^{\infty} \{\mathcal{S}(x_k) = \mathcal{S}(x^*)\}\right] \geq 1-p.$$

⁴Yifan Sun et al. "Are we there yet? Manifold identification of gradient-related proximal methods". In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, 2019, pp. 1110–1119.

⁵Sangkyun Lee and Stephen J Wright. "Manifold Identification in Dual Averaging for Regularized Stochastic Online Learning.". In: Journal of Machine Learning Research 13.6 (2012).

⁶Clarice Poon, Jingwei Liang, and Carola Schoenlieb. "Local convergence properties of SAGA/Prox-SVRG and acceleration". In: International Conference on Machine Learning. PMLR. 2018, pp. 4124–4132.

Support Identification

Theorem 6

Under all previous assumptions and algorithmic choices, there exists constants $\{C_1, C_2, C_3\} \subseteq \mathbb{R}^n_+$ that are independent of k, $k_{\Delta^*} = \left(\frac{C_2}{\Delta^*}\right)^4$ and $k_{\delta^*} = \left(\frac{C_1}{\delta^*}\right)^{4/C_3}$ such that, with $K := \max\{k_{\Delta^*}, k_{\delta^*}, \underline{k}\}$, it follows that

$$\mathbb{P}\left[igcap_{k\geq K}^{\infty}\left\{\mathcal{S}(y_k)=\mathcal{S}(x^*)
ight\}
ight]\geq 1-rac{\eta_0\pi^2}{6}>0.$$

- $\Delta^* \in (0,1)$ measures the primal non-degeneracy;
- $\delta^* \in (0,1)$ measures the dual non-degeneracy;
- exact proximal operator evaluation ($\tilde{\varepsilon}_k = 0$ for all k): $C_3 = 1$;
- inexact proximal operator evaluation ($\tilde{\varepsilon}_k = \frac{\log k}{(k+3)^2}$ for all k): $0 < C_3 < 1$.

Algorithm	$\ x_k-x^*\ ^2$	Support Identification	$\# Exact \nabla f$	Storage
ProxSVRG	$\mathcal{O}\left(ho_{ t ProxSVRG}^k ight)$	$\mathcal{O}(\log(1/\delta^*))$	every epoch	$\mathcal{O}(n)$
SAGA	$\mathcal{O}\left(ho_{ t SAGA}^k ight)$	$\mathcal{O}(\log(1/\delta^*))$	once	$\mathcal{O}(Nn)$
RDA	$\mathcal{O}(\log k/k)$	$\mathcal{O}\left(rac{1}{(\delta^*)^4} ight)$	never	$\mathcal{O}(n)$
S-PStorm	$\mathcal{O}(\log k/k)$	$\mathcal{O}\left(\max\left\{\frac{1}{(\delta^*)^4}, \frac{1}{(\Delta^*)^4}\right\}\right)$	never	$\mathcal{O}(n)$

Table: Comparison of the complexity of different methods assuming the exact proximal operator evaluation.

Outline

Introduction

- Problem Setup
- Variance Reduction
- Support Identification

2 Algorithm Design

3 Theoretical Results

- Convergence Complexity
- Support Identification Complexity

4 Numerical Results

Numerical Results

Different Group Structures

Figure: Left: Chain-like group structure; Right: Tree-like group structure

INFORMS 2023

Numerical Results

Problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{N} \sum_{j=1}^N \log \left(1 + e^{-y_j x^T d_j} \right) + 10^{-5} \|x\|^2 + \sum_{i=1}^{n_G} \lambda_i \|[x]_{g_i}\|$$

data set	N	n
a9a	32561	123
avazu-app.tr	12,642,186	1,000,000
covtype	581,012	54
kdd2010	8,407,752	20,216,830
news20	19,996	1,355,191
phishing	11,055	68
rcv1	20,242	47,236
real-sim	72,309	20,958
url	2,396,130	3,231,961
w8a	49,749	300

- N is the number of data points, $d_j \in \mathbb{R}^n$ is the *j*th data point, $y_j \in \{-1, 1\}$ is the class label
- non-overlapping chain structure (more in the paper)
- $n_{\mathcal{G}} \in \{\lfloor 0.25n \rfloor, \lfloor 0.50n \rfloor, \lfloor 0.75n \rfloor, n\}.$
- $\Lambda=0.1\Lambda_{min}$ and $\Lambda=0.01\Lambda_{min}.$

Iterates and Error Convergence

Support Identification

Figure: Normalized scores for four metrics that evaluate the performance of the support identification.

We designed an algorithm that can simultaneously achieve

- variance reduction without any full gradient evaluation and storing a huge gradient table,
- consistent support identification, and
- strong empirical performance.

Thank you and Questions?

Contact: yud319@lehigh.edu

Numerical Results

A high probability bound on ϵ_k .

Algorithmic Choices: $\beta_k = \min\{1/2, c/(k+1)\}$ with c > 1 and $\alpha_k \equiv \underline{\alpha}$ for all $k \ge 1$. Let $\eta_k > 0$, and define $\underline{k} = \lceil (2c) - 1 \rceil$ and

$$U(k) = \Theta\left(\max\left\{\left(rac{k+1}{k+2}
ight)^c, \; rac{c}{\sqrt{k+2}}
ight\}\sqrt{\lograc{2}{\eta_k}}
ight)$$

Theorem 7

Under certain assumptions, let $\eta_k = \frac{\eta_0}{k^2}$ for all $k \ge 1$ with $\eta_0 \in (0, 6/\pi^2)$, then

$$\mathbb{P}\left[\bigcap_{k\geq \underline{k}}^{\infty}\left\{\|\epsilon_k\|\leq U(k)\right\}\right]\geq 1-\frac{\eta_0\pi^2}{6}.$$

- ∇f is L_g -Lipschitz continuous and r is convex and closed
- $\mathbb{E}_{\xi \sim \mathcal{P}} \left[\nabla \ell(x_k; \xi) \mid \mathcal{F}_k \right] = \nabla f(x_k)$
- $\mathbb{P}_{\xi \sim \mathcal{P}}\{\|\nabla \ell(x_k,\xi) \nabla f(x_k)\| \leq \sigma \mid \mathcal{F}_k\} = 1$
- $\mathbb{P}_{\xi \sim \mathcal{P}} \{ \| d_k \| \leq G_d \mid \mathcal{F}_k \} = 1$
- $\mathbb{P}\{\|g_r\|_2 \leq G_r, \forall g_r \in \partial r(x_k)\} = 1$

Oct 16, 2023

For all $k \ge 2$, with the convention that $\prod_{i=l}^{u} a_i = 1$ if l > u, consider $\{e_{ki}\}_{i=0}^{k}$ with

$$e_{ki} := \begin{cases} 0 & i = 0, \\ \left(\prod_{j=2}^{k} (1-\beta_j)\right) A_1 & i = 1, \\ \left(\prod_{j=i+1}^{k} (1-\beta_j)\right) A_i + \left(\prod_{j=i}^{k} (1-\beta_j)\right) B_i & 2 \le i \le k, \end{cases}$$

where $A_i := v_i - \nabla f(x_i)$ and $B_i := \nabla f(x_{i-1}) - u_i$ for all $i \ge 1$ with v_i and u_i defined as in Algorithm 1.