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Introduction Problem Setup

Problem of Interest

Sparse optimization problem

min
x∈Rn

f (x) + r(x) := Eξ∼P [ℓ(x ; ξ)] + r(x)

ℓ(x ; ξ): loss function; convex and smooth almost surely.

- regression problem: f (x) = 1
N

∑N
i=1 log(1 + e−yi x

T di )

- diffusion problem: f (x) = Et∼[1,T ],p ∼P,ϵt∼N(0,I )

[∥∥ϵt − ℓ
(
x ;

√
ᾱtp +

√
1− ᾱtϵt , t

)∥∥2]
r(x): group sparsity inducing regularizer; convex and nonsmooth:

- group ℓ1: r(x) =
∑

i∈nG
λi∥[x]gi ∥2

(
λi > 0 for all i ∈ nG and

⋃
i∈nG

gi = [n]
)

- Example: for x ∈ R3

non-overlapping g1 = {1, 2} and g2 = {3} : r(x) = λ1

∥∥∥∥(x1
x2

)∥∥∥∥+ λ2∥x3∥.

overlapping g1 = {1, 2} and g2 = {2, 3} : r(x) = λ1

∥∥∥∥(x1
x2

)∥∥∥∥+ λ2

∥∥∥∥(x2
x3

)∥∥∥∥ .
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Introduction Problem Setup

(Stochastic) Proximal Gradient Methods

Access to true gradients

xk+1 = Proxαk r (xk − αk∇f (xk)) := arg min
x∈Rn

{
1

2αk
∥x −

(
xk − αk∇f (xk)

)
∥22 + r(x)

}
No/Restricted access to true gradients

xk+1 = Proxαk r (xk − αkdk) := arg min
x∈Rn

{
1

2αk
∥x −

(
xk − αkdk

)
∥22 + r(x)

}
with dk being some form of stochastic gradient estimator for ∇f (xk), e.g.,

dk = ∇ℓ(xk ; ξ) with ξ ∼ P.
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Introduction Variance Reduction

Variance Reduction

finite-sum structure

f (x) = 1
N

∑N
i=1 ℓ(x ; ξi ). variance reduced dk is constrcuted by using the control of variate idea.

SAGA1: form a gradient table G = [∇ℓ(xt1 ; ξ1), · · · ,∇ℓ(xtN ; ξN)] ∈ Rn×N ,

dk = ∇ℓ(xk ; ξi )−G [:, i ] +
1

N
G1 and G [:, i ]← ∇ℓ(xk ; ξi )

ProxSVRG2: periodic full gradient evaluation at anchor point x̃k .

dk = ∇ℓ(xk ; ξi )−∇ℓ(x̃k ; ξi ) +∇f (x̃k) and x̃k is updated periodically

Other methods ProxSARAH, ProxSpider, and more ...

1Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. “SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives”. In: Advances in neural
information processing systems 27 (2014).

2Lin Xiao and Tong Zhang. “A proximal stochastic gradient method with progressive variance reduction”. In: SIAM Journal on Optimization 24.4 (2014), pp. 2057–2075.
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Introduction Support Identification

Support Identification

The support of a point x ∈ Rn is defined as

S(x) = {i ∈ {1, . . . , nG} | [x ]gi ̸= 0}.

We say that support identification happens at point x ∈ Rn for a solution x∗ ∈ Rn to the problem if
S(x) = S(x∗).

Figure: Support identification. The solution x∗ ∈ R5 with group structures g1 = {1, 2, 3} and g2 = {4, 5}. Support
identification happens at the x ∈ R5 for the left figure while not for the right one.
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Introduction Support Identification

Goal

Design an algorithm that can simultaneously

achieve variance reduction
X full gradient evaluation
X storing a gradient table

establish the support identification in the stochastic setting
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Algorithm Design

Algorithm S-PStorm3

1: for k = 1, 2, . . . , do
2: Draw m i.i.d samples {ξk1, · · · , ξkm} w.r.t. P.
3: Set vk ← 1

m

∑m
i=1∇ℓ(xk ; ξki ).

4: if k = 1 then
5: Set dk ← vk .
6: else
7: uk ← 1

m

∑m
i=1∇ℓ(xk−1; ξki ).

8: Set dk ← vk + (1− βk)(dk−1 − uk).
9: end if

10: Compute yk ← argminx∈Rn

{
ϕp(x ; xk , αk , dk) :=

1
2αk
∥x −

(
xk − αkdk

)
∥22 + r(x)

}
.

11: Set xk+1 ← xk + ζβk(yk − xk).
12: end for

Inexact Proximal Operator Evaluation?

yk ≈ε̃k arg min
x∈Rn

{
1

2αk
∥x −

(
xk − αkdk

)
∥22 + r(x)

}
.

Definition of ε̃k -inexact solution:
ϕp(yk ; xk , αk , dk) ≤ ϕp(y

∗
k ; xk , αk , dk) + ε̃k where y∗

k is the solution.

3Yangyang Xu and Yibo Xu. “Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization”. In: Journal of Optimization Theory
and Applications 196.1 (2023), pp. 266–297.
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Theoretical Results

Key Lemma: bounding the error ϵk = dk −∇f (xk)

Tail bound.

[Rephrased froma.] Suppose {St}∞t=0 forms a martingale and denote et = St−St−1. If
∑∞

t=1 ∥et∥
2
∞ ≤ const

almost surely. Then for ρ > 0,

P
[
sup
t
∥St∥ ≥ ρ

]
≤ 2 exp

(
− ρ2

2const2

)
.

a Iosif Pinelis. “Optimum bounds for the distributions of martingales in Banach spaces”. In: The Annals of Probability (1994), pp. 1679–1706.

Decompose ϵk = dk −∇f (xk) =
∑k

t=0 ekt .

Define Skt =
∑t

i=0 eki for all 0 ≤ t ≤ k. Observe that ϵk = Skk .

Derive the upper bound of
∑k

t=1 ∥ekt∥
2.
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Theoretical Results

A high probability bound on ϵk .

Algorithmic Choices: βk = min{1/2, c/(k + 1)} with c > 1 and αk ≡ αfor all k ≥ 1.
Let ηk > 0, and define k = ⌈(2c)− 1⌉ and

U(k) = Θ

(
max

{(
k + 1

k + 2

)c

,
c√
k + 2

}√
log

2

ηk

)

Theorem 1

Under certain assumptions, let ηk = η0
k2

for all k ≥ 1 with η0 ∈ (0, 6/π2), then

P

 ∞⋂
k≥k

{∥ϵk∥ ≤ U(k)}

 ≥ 1− η0π
2

6
.

U(k) = Θ(max{
√
log k/kc ,

√
log k/k})

INFORMS 2023 S-PStorm: variance reduction and support identification Oct 16, 2023 13 / 26



Theoretical Results Convergence Complexity

Iterates Convergence

Additional Assumption: f is µf strongly convex.
Algorithmic choice: Let α = µf /L

2
g , ζ ∈ (0, 2), θ ≥ 2, c = (2θL2

g )/(ζµ
2
f ) > 2, and k = ⌈2c − 1⌉. Set ηk = η0/k

2

for all k ≥ 1 with η0 ∈ (0, 6/π2).

Theorem 2 (exact proximal operator evaluation)

P

 ∞⋂
k≥k

{
∥xk − x∗∥2 ≤ c̄1

∥xk − x∗∥2

kθ
+ c̄2

log 2k
η0

k

} ≥ 1− η0π
2/6 > 0.

Theorem 3 (inexact proximal operator evaluation)

P

 ∞⋂
k≥k

{
∥xk − x∗∥2 ≤ c̄ ′1

∥xk − x∗∥2

kθ
+ c̄ ′2

log 2k
η0

k + 1
+ c̄ ′3Ak

} ≥ 1− η0π
2/6 > 0,

where Ak := 1
(k+1)θ

·
∑k

i=1(i + 3)θ ε̃i and {ε̃i} measure the inexactness of the proximal operator evaluation.

Choose ε̃i = log(i + 1)/(i + 1)2 for all i to recover the complexity for the exact case.
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Theoretical Results Support Identification Complexity

Definition: Support Identification in the Stochastic Setting

Support identification in stochastic setting can be defined in the expectation sense4, in the high-probability
sense5, and in the almost surely sense6.

Definition 4 (support identification with high probability)

There exist K ∈ N+ and p ∈ (0, 1] such that

P [{S(xk) = S(x∗)}] ≥ 1− p for each k ≥ K .

Definition 5 (consistent identification with high probability)

There exist K ∈ N+ and p ∈ (0, 1] such that

P

 ∞⋂
k≥K

{S(xk) = S(x∗)}

 ≥ 1− p.

4Yifan Sun et al. “Are we there yet? Manifold identification of gradient-related proximal methods”. In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, 2019, pp. 1110–1119.

5Sangkyun Lee and Stephen J Wright. “Manifold Identification in Dual Averaging for Regularized Stochastic Online Learning.”. In: Journal of Machine Learning Research 13.6 (2012).
6Clarice Poon, Jingwei Liang, and Carola Schoenlieb. “Local convergence properties of SAGA/Prox-SVRG and acceleration”. In: International Conference on Machine Learning. PMLR. 2018,

pp. 4124–4132.
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Theoretical Results Support Identification Complexity

Support Identification

Theorem 6

Under all previous assumptions and algorithmic choices, there exists constants {C1,C2,C3} ⊆ Rn
+ that are

independent of k, k∆∗ =
(

C2
∆∗

)4
and kδ∗ =

(
C1
δ∗

)4/C3 such that, with K := max{k∆∗ , kδ∗ , k}, it follows that

P

 ∞⋂
k≥K

{S(yk) = S(x∗)}

 ≥ 1− η0π
2

6
> 0.

∆∗ ∈ (0, 1) measures the primal non-degeneracy;

δ∗ ∈ (0, 1) measures the dual non-degeneracy;

exact proximal operator evaluation (ε̃k = 0 for all k): C3 = 1;

inexact proximal operator evaluation (ε̃k = log k
(k+3)2

for all k): 0 < C3 < 1.
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Theoretical Results Support Identification Complexity

Summary

Algorithm ∥xk − x∗∥2 Support Identification # Exact ∇f Storage

ProxSVRG O
(
ρkProxSVRG

)
O(log(1/δ∗)) every epoch O(n)

SAGA O
(
ρkSAGA

)
O(log(1/δ∗)) once O(Nn)

RDA O(log k/k) O
(

1
(δ∗)4

)
never O(n)

S-PStorm O(log k/k) O
(
max

{
1

(δ∗)4 ,
1

(∆∗)4

})
never O(n)

Table: Comparison of the complexity of different methods assuming the exact proximal operator evaluation.
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Numerical Results

Different Group Structures

𝐺! 𝐺" 𝐺#

non-overlapping

overlapping

1

2 4

3 5

𝐺!

𝐺" 𝐺#

𝐺$ 𝐺%

Figure: Left: Chain-like group structure; Right: Tree-like group structure
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Numerical Results

Problem

min
x∈Rn

1
N

N∑
j=1

log
(
1 + e−yj x

T dj
)
+ 10−5∥x∥2 +

nG∑
i=1

λi ∥[x ]gi ∥

data set N n
a9a 32561 123
avazu-app.tr 12,642,186 1,000,000
covtype 581,012 54
kdd2010 8,407,752 20,216,830
news20 19,996 1,355,191
phishing 11,055 68
rcv1 20,242 47,236
real-sim 72,309 20,958
url 2,396,130 3,231,961
w8a 49,749 300

N is the number of data points, dj ∈ Rn is the jth
data point, yj ∈ {−1, 1} is the class label

non-overlapping chain structure (more in the paper)

nG ∈ {⌊0.25n⌋, ⌊0.50n⌋, ⌊0.75n⌋, n}.
Λ = 0.1Λmin and Λ = 0.01Λmin.
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Numerical Results

Iterates and Error Convergence
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Numerical Results

Support Identification
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Figure: Normalized scores for four metrics that evaluate the performance of the support identification.
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Numerical Results

Summary

We designed an algorithm that can simultaneously achieve

variance reduction without any full gradient evaluation and storing a huge gradient table,

consistent support identification, and

strong empirical performance.
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Numerical Results

Q&A

Thank you and Questions?

Contact: yud319@lehigh.edu
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Numerical Results

A high probability bound on ϵk .

Algorithmic Choices: βk = min{1/2, c/(k + 1)} with c > 1 and αk ≡ α for all k ≥ 1.
Let ηk > 0, and define k = ⌈(2c)− 1⌉ and

U(k) = Θ

(
max

{(
k + 1

k + 2

)c

,
c√
k + 2

}√
log

2

ηk

)

Theorem 7

Under certain assumptions, let ηk = η0
k2

for all k ≥ 1 with η0 ∈ (0, 6/π2), then

P

 ∞⋂
k≥k

{∥ϵk∥ ≤ U(k)}

 ≥ 1− η0π
2

6
.

∇f is Lg -Lipschitz continuous and r is convex and closed

Eξ∼P [∇ℓ(xk ; ξ) | Fk ] = ∇f (xk)
Pξ∼P{∥∇ℓ(xk , ξ)−∇f (xk)∥ ≤ σ | Fk} = 1

Pξ∼P{∥dk∥ ≤ Gd | Fk} = 1

P{∥gr∥2 ≤ Gr , ∀gr ∈ ∂r(xk)} = 1
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Numerical Results

Error Decomposition

For all k ≥ 2, with the convention that
∏u

i=l ai = 1 if l > u, consider {eki}ki=0 with

eki :=


0 i = 0,(∏k

j=2(1− βj)
)
A1 i = 1,(∏k

j=i+1(1− βj)
)
Ai +

(∏k
j=i (1− βj)

)
Bi 2 ≤ i ≤ k,

where Ai := vi −∇f (xi ) and Bi := ∇f (xi−1)− ui for all i ≥ 1 with vi and ui defined as in Algorithm 1.
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