Selected Publications

SCUBA: Salesforce Computer Use Benchmark (arixv, 2025)

We introduce SCUBA, a benchmark designed to evaluate computer-use agents on customer relationship management (CRM) workflows within the Salesforce platform. SCUBA contains 300 task instances derived from real user interviews, spanning three primary personas—platform administrators, sales representatives, and service agents. The tasks test a range of enterprise-critical abilities, including Enterprise Software UI navigation, data manipulation, workflow automation, information retrieval, and troubleshooting. To ensure realism, SCUBA operates in Salesforce sandbox environments with support for parallel execution and fine-grained evaluation metrics to capture milestone progress. We benchmark a diverse set of agents under both zero-shot and demonstration-augmented settings. We observed huge performance gaps in different agent design paradigms and gaps between the open-source model and the closed-source model. In the zero-shot setting, open-source model powered computer-use agents that have strong performance on related benchmarks like OSWorld only have less than 5% success rate on SCUBA, while methods built on closed-source models can still have up to 39% task success rate. In the demonstration-augmented settings, task success rates can be improved to 50% while simultaneously reducing time and costs by 13% and 16%, respectively. These findings highlight both the challenges of enterprise tasks automation and the promise of agentic solutions. By offering a realistic benchmark with interpretable evaluation, SCUBA aims to accelerate progress in building reliable computer-use agents for complex business software ecosystems.

CoAct-1: Computer-using Agents with Coding as Actions (arixv, 2025)

Autonomous agents that operate computers via Graphical User Interfaces (GUIs) often struggle with efficiency and reliability on complex, long-horizon tasks. While augmenting these agents with planners can improve task decomposition, they remain constrained by the inherent limitations of performing all actions through GUI manipulation, leading to brittleness and inefficiency. In this work, we introduce a more robust and flexible paradigm: enabling agents to use coding as a enhanced action. We present CoAct-1, a novel multi-agent system that synergistically combines GUI-based control with direct programmatic execution. CoAct-1 features an Orchestrator that dynamically delegates subtasks to either a conventional GUI Operator or a specialized Programmer agent, which can write and execute Python or Bash scripts. This hybrid approach allows the agent to bypass inefficient GUI action sequences for tasks like file management and data processing, while still leveraging visual interaction when necessary. We evaluate our system on the challenging OSWorld benchmark, where CoAct-1 achieves a new state-of-the-art success rate of 60.76%, significantly outperforming prior methods. Furthermore, our approach dramatically improves efficiency, reducing the average number of steps required to complete a task to just 10.15, compared to 15 for leading GUI agents. Our results demonstrate that integrating coding as a core action provides a more powerful, efficient, and scalable path toward generalized computer automation.

GTA1: GUI Test-time Scaling Agent (arixv, 2025)

Graphical user interface (GUI) agents autonomously complete tasks across platforms (e.g., Linux) by sequentially decomposing user instructions into action proposals that iteratively interact with visual elements in the evolving environment. However, two main challenges arise: i) planning (i.e., the action proposal sequence) under expansive action space, where selecting an appropriate plan is nontrivial, as many valid ones may exist; ii) accurately grounding actions in complex and high-resolution interfaces, i.e., precisely interacting with visual targets. This paper investigates the aforementioned challenges with our GUI Test-time Scaling Agent, namely GTA1. First, we conduct test-time scaling to select the most appropriate action proposal: at each step, multiple candidate proposals are sampled and evaluated and selected by a judge model. It trades off computation for better decision quality by concurrent sampling. Second, we propose a model that improves grounding of the selected action proposals to its corresponding visual elements. Our key insight is that reinforcement learning (RL) facilitates grounding through inherent objective alignments, rewarding successful clicks on interface elements. Experimentally, GTA1 achieves state-of-the-art performance on both grounding and agent task execution benchmarks.

An Adaptive Half-Space Projection Method for Stochastic Optimization Problems with Group Sparse Regularization (TMLR, 2023)

Optimization problems with group sparse regularization are ubiquitous in various popular downstream applications, such as feature selection and compression for Deep Neural Networks (DNNs). Nonetheless, the existing methods in the literature do not perform particularly well when such regularization is used in combination with a stochastic loss function. In particular, it is challenging to design an algorithm that is computationally efficient, has a convergence guarantee, and is able to compute group-sparse solutions. Recently, a half-space stochastic projected gradient (HSPG) method was proposed that partly addressed these challenges. In this paper, we present a substantially enhanced version of HSPG that we call~ AdaHSPG+ that makes two noticeable advances. First, AdaHSPG+ is shown to have a stronger convergence result under significantly looser assumptions than those required by HSPG. This improvement in convergence is achieved by integrating variance reduction techniques with a new adaptive strategy for iteratively predicting the support of a solution. Second, AdaHSPG+ requires significantly less parameter tuning compared to HSPG, thus making it more practical and user friendly. This advance is achieved by designing automatic and adaptive strategies for choosing the type of step employed at each iteration and for updating key hyperparameters. The numerical effectiveness of our proposed AdaHSPG+ algorithm is demonstrated on both convex and non-convex benchmark problems.

A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization (AISTATS, 2023)

This paper introduces a new proximal stochastic gradient method with variance reduction and stabilization for minimizing the sum of a convex stochastic function and a group sparsity-inducing regularization function. Since the method may be viewed as a stabilized version of the recently proposed algorithm PStorm, we call our algorithm S-PStorm. Our analysis shows that S-PStorm has strong convergence results. In particular, we prove an upper bound on the number of iterations required by S-PStorm before its iterates correctly identify (with high probability) an optimal support (i.e., the zero and nonzero structure of an optimal solution). Most algorithms in the literature with such a support identification property use variance reduction techniques that require either periodically evaluating an exact gradient or storing a history of stochastic gradients. Unlike these methods, S-PStorm achieves variance reduction without requiring either of these, which is advantageous. Moreover, our support-identification result for S-PStorm shows that, with high probability, an optimal support will be identified correctly in all iterations with the index above a threshold. We believe that this type of result is new to the literature since the few existing other results prove that the optimal support is identified with high probability at each iteration with a sufficiently large index (meaning that the optimal support might be identified in some iterations, but not in others). Numerical experiments on regularized logistic loss problems show that S-PStorm outperforms existing methods in various metrics that measure how efficiently and robustly iterates of an algorithm identify an optimal support.

Tackling Data Heterogeneity in Federated Learning with Class Prototypes (AAAI, 2023)

Data heterogeneity across clients in federated learning (FL) settings is a widely acknowledged challenge. In response, personalized federated learning (PFL) emerged as a framework to curate local models for clients’ tasks. In PFL, a common strategy is to develop local and global models jointly - the global model (for generalization) informs the local models, and the local models (for personalization) are aggregated to update the global model. A key observation is that if we can improve the generalization ability of local models, then we can improve the generalization of global models, which in turn builds better personalized models. In this work, we consider class imbalance, an overlooked type of data heterogeneity, in the classification setting. We propose FedNH, a novel method that improves the local models’ performance for both personalization and generalization by combining the uniformity and semantics of class prototypes. FedNH initially distributes class prototypes uniformly in the latent space and smoothly infuses the class semantics into class prototypes. We show that imposing uniformity helps to combat prototype collapse while infusing class semantics improves local models. Extensive experiments were conducted on popular classification datasets under the cross-device setting. Our results demonstrate the effectiveness and stability of our method over recent works.